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This paper studies a client’s time-flexible supply contract selection problem under vendors participation

constraint. A supply contract with time-flexible option has long been laureled in the literature for its

effectiveness in protecting the client from future cost uncertainty and has become increasingly popular in

practice. The time-flexible option grants the client the option to execute the supply contract and receive

components or subassemblies from its vendor at any time within a pre-specified future time period. We

adopt a Real Options framework to study the client’s optimal sourcing decision at both the strategic

(time-flexible supply contract selection between a fixed-price contract and a cost-plus contract) and

operational (optimal sourcing timing) levels, subject to vendors participation constraints. We analytically

characterize vendors’ optimal participation policies (i.e., the participate-up-to policy for the fixed-price

contract and the participate-in-between policy for the cost-plus contract) and the clients optimal contract

selection policy (i.e., the select-up-to policy). Furthermore, we identify two strategic mothball regions under

which the client should not exercise an immediately exercisable contract but select the other unexercisable

contract and wait for its best execution timing. The mothball region scenarios caution managers against

early commitment to an incorrect contract form, even if this contract is profitable and immediately

exercisable. Moreover, we discover that the client’s option contract value does not necessarily increase in

either vendors or client’s cost volatility. We introduce Correlated Relative Volatility as a measure to explain

the non-monotonicity of the option contract value. This non-monotonicity observation suggests that the

time-flexible option could benefit both the client and vendors, especially under a high cost volatility, and

calls for the attention of both parties and encourages them to incorporate timing flexibility into their

contracting processes for a win-win solution.

Key words : fixed-price contract, cost-plus contract, contract selection, contract participation, timing flexi-

bility, real options, elasticity, correlation, correlated relative volatility.

1. Introduction

Sourcing components or subassemblies is a critical strategy that firms rely on when seeking to

improve their global competitive advantages. Among possible benefits of sourcing strategy, such
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as operational efficiency, capacity pooling, access to external expertise, and advanced technologies,

cost reduction is a pivotal motivating factor (Li and Kouvelis 1999, Plambeck and Taylor 2006,

Aksin et al. 2008). Yet, gauging the possible cost-reduction benefits is often complicated by the

fact that operating and sourcing costs can be highly volatile and stochastically varying over time

depending on several factors, including the characteristics of sourcing countries and industries

(Bergin et al. 2007, Jacks et al. 2009), exchange rates (Huchzermeier and Cohen 1996), unpredicted

capacity constraints (Seshadri 2005), and prices of raw materials (Wu and Chen 2010).

To effectively protect firms from cost uncertainty, time-flexible options in supply contracts have

been proposed and studied in the literature. The time-flexible option contract grants the client

the option, but not the obligation, to execute/exercise the supply contract and receive prod-

ucts/services from its vendor at any time within a pre-specified future time period (Li and Kouvelis

1999). By observing a realized cost trajectory along the way and determining the optimal sourcing

time, the client could effectively leverage cost uncertainty via the time-flexible option contract. The

time-flexible option has therefore become increasingly popular in industry. Some emerging practices

for utilizing the time-flexible option in supply contracts include Hewlett-Packard’s procurement

risk management and Ben & Jerry’s entry into the Japanese market (Fotopoulos et al. 2008).

In addition, when facing sourcing cost uncertainties, companies including IBM, Hewlett-Packard,

Sun, Compaq, and Solectron have also incorporated timing flexibility, together with various other

flexibility, such as quantity flexibility, into their supply contracts (Hu et al. 2012). Hence, to scien-

tifically gauge the benefits of the time-flexible option contract and to further potentially popularize

its adoption in sourcing practices, we seek to answer the first research question: what is the value

of the time-flexible option contract from the client’s perspective?

In addition to the time-flexible option, clients can also leverage the perceived cost uncertainty

through contract selection. In practice, the vast majority of supply contracts, with or without

time-flexible options, are variants of simple fixed-price (FP) and cost-plus (CP) contracts (Kern

et al. 2002, Leimeister 2010, Seshadri 2005). In a FP contract, the client pays a constant price

rate set forth by the FP agreement regardless of the vendor’s operating cost. By adhering to the

fixed sourcing cost, the client essentially shifts its future cost uncertainty to its vendor. Clearly,

the client avoids paying a high premium if the vendor’s operating cost significantly increases in the

future. On the other hand, if the vendor’s cost dramatically drops (e.g., the cost of raw materials

declines), the client will be locked into this relatively high sourcing price.

In a CP contract, the client’s sourcing cost consists of the vendor’s operating cost and a fixed

proportional markup. Under this cost structure, the client and the vendor share the potential bene-

fits and risks of the fluctuating cost. Certainly, the CP contract helps the client avoid overcharging

from a low-cost vendor. Yet, facing ever-changing market conditions, the client’s sourcing cost could
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spiral out of control if the vendor’s cost drastically increases in the future. The central focus of this

study is to conduct cost analyses on both types of supply contracts with time-flexible options and

extract managerial insights in response to the second research question: which time-flexible supply

contract, FP or CP, should the client choose to better manage the influence of cost uncertainty?

Most models are developed from the client’s perspective, while little attention has been paid

to the vendor’s participation decisions. The implicit assumption is that the client’s strate-

gic/operational decisions are always acceptable to a passive vendor. Like the client, however, the

vendor faces the decision of whether to participate in a particular contract via evaluating the net

worth of the contract in the presence of both uncertain future costs and uncertain sourcing timing.

The vendor will only accept a contract that it deems profitable. By examining the interaction of

both sides, this paper sheds light on the third question: what is the value of time-flexible option

contracts from the vendors perspective?

To answer these three research questions, we develop a model in which a client deliberates on how

to procure components or subassemblies to satisfy its customers’ future demand. The client can

continue purchasing from the spot market, or it can choose from one of two types of time-flexible

supply contracts: the FP contract or the CP contract. The operating costs for the client (i.e., the

purchasing cost from the spot market) and two vendors follow correlated time-dependent stochastic

processes, which capture the phenomena that future costs are both uncertain and potentially

correlated (e.g., the raw material price may simultaneously affect the spot market price for the

client and the operating costs for vendors). The client needs to decide which contract to sign up and

when to execute the selected contract during the contract’s effective time window. Furthermore,

supply contracts must meet the vendors’ participation constraints so that they are also profitable

to vendors.

From the client’s perspective, we prove that the optimal contract selection decision is a threshold-

type policy. In particular, when both contracts are offered, then the client’s optimal contract

selection policy is the select-up-to (SUT) policy: select the CP contract if the client’s operating

cost is lower than a threshold value; otherwise, choose the FP contract. Further, we show that with

the time-flexible option, the client’s optimal execution timing decision also follows threshold-type.

In particular, if the client selects the FP contract, then it has the option to execute the contract

and pay the vendor a fixed rate agreed ex ante. We demonstrate that under the FP contract, the

client will exercise the option and execute the FP contract when its operating cost (i.e., purchasing

cost from the spot market) reaches or exceeds a certain threshold. In contrast, if the CP contract

is selected, the client should wait and postpone the contract execution if its current cost efficiency

ratio (i.e., the client’s spot market purchasing cost divided by the vendor’s cost) is below a certain

threshold. Recall that under CP contract structure, the sourcing cost depends on the vendor’s cost
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(i.e., the vendor’s operating cost plus a profit margin). The client is therefore better off procuring

from the spot market instead of exercising the CP contract, unless doing so is much more costly

than that of sourcing from the vendor of the CP contract (e.g., the cost efficiency ratio is high).

Moreover, we find that the client’s option value under the CP contract does not necessarily

increase with either the vendor’s or client’s cost volatility, which contradicts the conventional belief

in a two-stochastic-factor Real Option (RO) model (e.g., McDonald and Siegel 1986 and Dixit

and Pindyck 1994). To better explain the comparative statics of the client’s option value, we use

Correlated Relative Volatility (CRV) to gauge the relative cost volatility of the client in relation

to that of the vendor, and we show that the CP contract’s option value increases as the difference

between the two cost volatilities becomes more significant (i.e., as CRV moves away from 1 in either

direction). We show that this non-monotonicity of the CP contract’s option value would help align

the interests of both firms, since a high cost volatility could benefit both the client and the vendor.

Through comparison of the FP and CP contract values, we reveal two strategic scenarios, the

FP- and CP-oriented mothball regions, in which the client can expect a higher profit by not

exercising the immediately exercisable contract, but instead selecting the other not-immediately-

exercisable (i.e., unexercisable) contract and waiting for its best execution timing. The mothball

region scenarios show that the plausible perception that the client should select the contract that

is both profitable and immediately exercisable may lead to an incorrect contract commitment as

well as suboptimal sourcing timing.

From the vendors perspective, we integrate the client’s sourcing timing decision into vendors’

contract value functions and identify vendors’ participation policies with respect to two contract

types. These two distinct participation policies reflect different tradeoffs faced by two vendors. In

the FP contract, the tradeoff is between the FP contract vendor’s fixed revenue and its random cost

after its execution. The vendor has an incentive to offer the FP contract as long as its fixed revenue

stream exceeds its operating cost, and its optimal contract participation policy is characterized

by the “participate-up-to” (PUT) policy: offer the FP contract if its operating cost is lower than

a threshold. In comparison, the CP contract vendor’s tradeoff is between the profit margin (i.e.,

a proportional mark-up from its own cost) and the profit discounting due to the client’s waiting

for a better execution time. Therefore, the vendor is willing to offer the CP contract when its

operating cost is neither too low (e.g., low revenue) nor too high (e.g., long wait). Accordingly, the

CP contract vendor’s optimal participation policy is prescribed by the lower and upper bounds of

its operating cost, and we therefore refer to this policy structure as the “participate-in-between”

(PIB) policy.

Finally, by combining previous results, we are able to study the client’s contract selection policy

under vendors’ participation constraints. We notice that while the client’s performance measure has



Supply Contract Selection and Timing
5

state-independent comparative properties, as is often observed in the RO literature, the vendor’s

performance has state-dependent comparative statics with respect to elasticity and other system

inputs. This suggests that system parameters and system states have a separable impact on the

client’s performance, but they have a joint impact on the vendor’s performance. This observation

implies that contract partners do not necessarily have conflicts of interest, and the client’s timing

flexibility could benefit both the vendor and the client, which favors adoption of the supply contract

with the time-flexible option (i.e., the RO contract) and calls both parties to explore opportunities

that are mutually beneficial (win-win).

The rest of this paper is organized as follows. Section 2 reviews the related literature. Section 3

formulates dynamic programming models for the vendors’ and client’s decision-marking processes.

Sections 4-6 investigate a base model to analytically characterize the client’s and vendors’ sourcing

decisions. Specifically, Section 4 solves the client’s contract selection problem; Section 5 studies

the vendors’ optimal participation policies; and Section 6 incorporates the vendor participation

constraints into the client’s contract selection policy. Section 7 extends the base model and discuss

the value of time-flexible option. Finally, Section 8 summarizes the contributions and suggests

future research directions. All proofs are presented in Appendices A-J.

2. Literature Review

This work is closely related to the contract selection issue in the supply contract literature. In this

study, we focus on comparing and selecting between two prevalent supply contracts in sourcing

practice, the FP contract and the CP contract. Seshadri (2005) reports that the FP contract prevails

in practice for its simplicity, but for more complex projects, the CP contract is sometimes preferred

(Bajari and Tadelis 2001). Given the rich literature and studies comparing different contracts, we

refer interested readers to Cachon (2003) and Kouvelis et al. (2006) for comprehensive reviews.

Our work focuses on a special type of supply contract: the time-flexible supply contract. The

importance of timing flexibility has long been recognized in the supply chain literature (e.g., Fer-

guson et al. 2005 and Taylor 2006), and the literature has studied models that endogenize the

execution timing decision in supply contracts. Closely related to our paper, Li and Kouvelis (1999)

introduce both time flexibility and quantity flexibility into supply contracts. The time-flexible

contract enables the client to choose to execute the supply contract and receive products at any

time within a pre-specified time period. They show that the time-flexible contract, when carefully

exercised, can reduce the sourcing cost under volatile cost uncertainty. Milner and Kouvelis (2005)

further demonstrate that timing flexibility has the greatest benefit for the client when the client

faces a stationary and known demand. Some recent literature, such as Fotopoulos et al. (2008) and

Hu et al. (2012), consider the time-flexible contract and its variants and consistently demonstrate
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the benefits of timing flexibility for the client. In contrast with previous papers, which consider a

single time-flexible contract, our paper considers the client’s contract selection problem between

two time-flexible option contracts and further incorporates the vendors’ participation constraints.

We investigate the influence of timing flexibility from the vendors’ perspectives and show that

timing flexibility could simultaneously benefit both the client and vendors.

This work is also related to the real options literature. From the real options perspective, the

client has one option on hand: execute the contract now or later. Such timing-related managerial

flexibility has been intensively discussed in economics (Dixit and Pindyck 1994). In the supply con-

tracts literature, the application of real options theory is also growing. Johnstone (2002) formulates

a public sector sourcing problem as an exchange option, and Kamrad and Siddique (2004) consider

a supplier’s reaction option in supply chain contracts. The multi-stochastic factor model considered

in this paper is consistent with the real option literature (e.g., McDonald and Siegel 1986 and

Dixit and Pindyck 1994). Typically, the literature considers a one or two dimensions Brownian

motion problem and obtains closed-form solutions for the client’s value function. In contrast, this

paper develops closed-form solutions for more general value functions under a correlated three-

dimensional Brownian motion model. This allows us to incorporate the client’s waiting flexibility

into the vendors’ value functions and obtain the closed-form solution of the vendor’s participation

policy and comparative statics. These new results fill this void in RO literature and advance the

existing RO theory. Moreover, previous studies typically determined the impact of correlation,

by assuming that the covariance of the two factors and variance of each factor are independent

parameters; this assumption leads to the result that an increase of either factor’s volatility will

increase the option value and the expected option waiting time (e.g., McDonald and Siegel 1986

and Dixit and Pindyck 1994). In contrast, our model emphasizes the role of correlation by treating

the correlation of the two factors and the volatility of each factor as independent; this leads to a

non-monotone relationship between the option value and the correlated relative volatility. We pro-

vide a discussion beyond the technical assumptions and reveal significant economic underpinnings

that would justify the two different assumptions. A deep understanding of economic foundation of

the operating costs can help the client select the correct model, which may have drastically differ-

ent strategic implications. We show that this new result has interesting implications in operations

management applications, such as the problem investigated in this paper.

3. The Model

We consider a client deliberating on how to procure components or subassemblies to satisfy its

customers’ future demand. The client can continue purchasing directly from a spot market; or

it can sign a time-flexible supply contract from potential vendors. In particular, two types of
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supply contracts, the fixed-price (FP) contract and the cost-plus (CP) contract, are solicited from

a competitive global sourcing market. It is possible that one type of contract might be offered by

multiple vendors and that one vendor could offer both contracts. Yet, for exposition purpose and

without loss of generality, we abstract the vendor(s) who offers the FP contract as vendor 1 and

the one who offers the CP contract as vendor 2.

The client’s operating cost (i.e., purchasing directly from the spot market) and the vendors’

operating costs (i.e., producing subcomponents) are highly volatile, due to the material prices or

exchange rates, and evolve according to Geometric Brownian Motions (GBM) processes (e.g., see

Li and Kouvelis 1999 for similar settings and Marathe and Ryan 2005 for empirical justifications).

Specifically, the operating costs for a single unit product at the client and vendor i, i = 1,2,

are denoted by W (t) and Wi(t), t ≥ 0, which evolve according to the following correlated GBM

processes,

dW (t) = μW (t)dt + σW (t)dB(t), (1)

dWi(t) = μiWi(t)dt + σiWi(t)dBi(t), i = 1,2, (2)

where dB(t) and dBi(t) are the standard Brownian motion (BM) processes with correlation

ρi=̇Cov[dB(t), dBi(t)], the drift rates of future changes μ and μi, and volatilities σ and σi, respec-

tively, for i=1,2. For the purpose of this research and to streamline the analyses, we consider both

the client and vendors will not financially hedge. Particularly, the operating costs uncertainty origi-

nates from multiple sources, including raw materials, exchange rate, political regulation, industrial

related idiosyncratic risk, etc., perfectly hedging which via financial instruments can be exceedingly

challenging due to the lack of trading instruments/markets or simply because certain risks cannot

be quantified and hedged financially. Instead, the client could mitigate its operating cost risk by

carefully planning its contract selection and execution timing decisions.

In the FP contract, vendor 1 charges a fixed transaction cost, C, which is invariant with respect to

time. While in the CP contract, vendor 2 collects a variable transaction cost based on a proportional

markup of its operating cost at that time: (1 + α)W2(t), where α is vendor 2’s markup. Both

types of contracts facilitate the client to source a single unit of components or subassemblies

from its vendors. As a standard practice, many clients adopt the benchmarking clauses in the

supply contracts to ensure that the contract terms are competitive and in line with the market

price (e.g. see Kane 2013). Therefore, we consider that the terms and cost structure of supply

contracts are determined exogenously by the competitive market. Upon signing the time-flexible

supply contract at time 0, the client can choose to exercise the supply contract any time before

the expiration time TE; or let the contract expire without exercising it. Once excising the contract,
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the client immediately starts receiving components or subassemblies from its vendor until the

contract expires. The client’s contract execution timing flexibility reflects the fact that the sourcing

decision is in the hands of a pre-sourcing firm in a competitive environment, whereas a vendor may

require a minimum level of utility that must be warranted for a contract to be acceptable. It is

worth mentioning that the expiration time for supply contracts vary greatly in length, and multi-

year contracts (e.g., long expiration time TE) are typically observed in practice (Ellman 2006).

After the contract expires, the client could either continue sourcing from the same vendor through

renegotiation and renewal or switch its vendors and contracts, to which processes our analysis

could be re-applied.

Vendors’ internal cost structure and operating conditions could influence their incentives to offer

supply contracts in the first place. Let W =̇W (0) and Wi=̇Wi(0) be the costs at time 0. For vendor

i to offer a supply contract, its expected profit Ui(W,Wi) should be no less than ξi ≥ 0:

U1(W,W1) =̇ E

[∫ TE

T∗
1

(C −W1(t))e−rtdt

]

≥ ξ1, (3)

U2(W,W2) =̇ E

[∫ TE

T∗
2

αW2(t)e−rtdt

]

≥ ξ2, (4)

where T ∗
i ≤ TE, i = 1,2 is the perceived client’s optimal contract execution time and cash flows

are discounted at a constant rate r. Note that ξi can be interpreted as the vendor’s setup cost or

opportunity cost minuses the possible transfer payment from the client (to sign the contract or

reserve the vendor’s capacity). To ensure the convergency of the profit function, we require μi < r

and μ < r, which essentially implies that the net present value of the future profit is decreasing as

the time increases.

We denote the client’s revenue rate per unit time by R, which is assumed to be invariant over

time. This assumption is for expositional simplicity: the results remain valid for a time-dependent

revenue stream. Immediately after exercising a contract, the client incurs a liquidation cost K to

transit from purchasing from the spot market to sourcing from its vendor. The client may lay off

employees (a positive liquidation cost) and sell its related assets (a negative liquidation cost or a

liquidation revenue) after exercising the supply contract. Therefore, K can be positive or negative.

We further denote V1(W ) and V2(W,W2) as the expected maximum discounted profits of the

client during interval [0, TE) under the FP and CP contracts, respectively. Notably, the client’s

profit under CP, V2(W,W2), depends on costs W and W2, whereas its profit under FP, V1(W ),

depends only on its own cost W , because the client pays a fixed price no matter how W1 varies.

If the client selects the FP contract, then its optimal FP contract exercise timing problem can be

solved by the following stochastic optimal stopping problem:

V1(W ) =̇ sup
0≤T1≤TE

E

[∫ T1

0

(R−W (t))e−rtdt +
∫ TE

T1

(R−C)e−rtdt−K e−rT1I0≤T1<TE

]

, (5)
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where T1 is the execution time of FP contract. If T1 = TE , the client will not source from vendor

1 during [0, TE). The first and second terms of Eq. (5) are the client’s expected profits before and

after sourcing to vendor 1 respectively, and the third term represents the possible liquidation cost

at time T1 < TE. Similarly, if the client selects the CP contract, then the client’s expected profit

can be presented by the following stochastic optimal stopping problem. In particular, denote T2 as

the execution time of the CP contract. Then

V2(W,W2) =̇ sup
0≤T2≤TE

E

[∫ T2

0

(R−W (t))e−rtdt +
∫ TE

T2

(R−(1+α)W2(t))e−rtdt−Ke−rT2I0≤T2<TE

]

.(6)

When both FP contract and CP contract are offered, the client will select one contract to

maximize its expected profit. Accordingly, the value function of the client can be denoted as

V (W,W2)=̇max{V1(W ), V2(W,W2)} . (7)

In the next three sections (i.e., Section 4 to 6), for the sake of clear illustration, we will start

with a Base Model for the contract selection problem formulated in Eqs. (3)–(7) by assuming the

expiration time TE =∞ (i.e. long-term contract) and the liquidation cost K = 0. These assumptions

enable an explicit analytical solution for each firm. In Section 7.1, we will demonstrate that all our

results and insights will qualitatively hold true for the general case where TE <∞ (i.e., short-term

contract) and K 6= 0 (non-zero liquidation cost).

4. Client’s Unconstrained Contract Selection Problem

In this section, we study the client’s unconstrained contract selection problem formulated in Eqs.

(5)–(7) by assuming both contracts are offered at the client’s disposal (i.e., relaxing constraints (3)

and (4)). Specifically, using a dynamic programming approach, we first solve the client’s operational

decision (i.e., execution timing decision) and calculate the values for FP and CP contracts in

Sections 4.1 and 4.2, respectively. Then, we compare the values of those two contracts and determine

the client’s strategic decision (i.e., contract selection decision) in Section 4.3.

4.1. Fixed Price Contract

We start with the client’s optimal execution timing decision for FP contract and gauge the value

of such contract, V1(W ). Using American option theory, we obtain the following proposition.

Proposition 1. Under FP contract, it is optimal for the client to follow a threshold-type exe-

cution policy: the client will exercise FP contract if its operating cost exceeds certain threshold W ∗;

otherwise, the client should continue waiting. The execution cost threshold W ∗ and the correspond-

ing value function V1(W ) under the FP contract are given as follows:

W ∗ =
β1

β1 − 1

(
C

r

)

(r−μ), (8)

V1(W ) =

{
( W

W∗ )β1( W∗

r−μ
− C

r
)+ (R

r
− W

r−μ
), if W < W ∗,

R−C
r

, if W ≥W ∗,
(9)
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Table 1 Comparative Statics of Client’s policy parameters: the FP contract for the Base Model.
Policy Parameter

System input β1 O1 , V1 W*
σ − + +
W −
β1 − −

where β1 is the elasticity of the option value with respect to its cost in the FP contract and

β1=̇
1
2
−

μ

σ2
+

√(
μ

σ2
−

1
2

)2

+
2r

σ2
≥ 1. (10)

Clearly, if the client’s initial cost W is higher than the threshold W ∗, then the client should

exercise FP immediately. As stated in Eq. (9), the value of FP contract is directly given by the Net

Present Value (NPV) of the operating profit, R−C
r

. On the other hand, when the client’s initial cost

associated with purchasing directly form the spot market is below such threshold, it should wait

until its cost first reaches W ∗. Therefore, under such scenario, the value of FP contract contains

two components: the NPV of keeping purchasing from the spot market, R
r
− W

r−μ
, and the NPV

once FP is exercised at time T ∗
1 , O1(W )=̇( W

W∗ )β1( W∗

r−μ
− C

r
). Here, ( W

W∗ )β1 is the discount factor at

the optimal stopping time T ∗
1 , and W∗

r−μ
− C

r
is the value after FP is exercised at T ∗

1 .

Next, we examine comparative statics of policy parameters with respect to system inputs/states

in the FP contract. Specifically, we will call V1(W ), O1 and W ∗ the policy parameters, σ, σ1,

ρ1 and β1 the system inputs, and W and W1 the system states hereafter. First, it is clear that

each policy parameter in FP is independent of σ1 and ρ1. Other comparative static results are

displayed in Table 1 (proofs are provided in the appendix), where ‘−’ and ‘+’ represent the negative

(i.e. increasing in the system input will decrease the value of its corresponding policy parameter)

and positive (increasing in the system input will increase the value of its corresponding policy

parameter) relationships, respectively, between a system input and a policy parameter.

The comparative statics results of O1 and W ∗ displayed in Table 1 support our intuition that

when the client’s cost W (i.e., the cost of purchasing from the spot market) becomes more volatile,

the option value O1 becomes higher due to the asymmetry between the bounded downward risk and

the unbounded upward potential – an observation often supported by the real options literature.

Table 1 also establishes the relationship between volatility (σ) and elasticity (β1), and shows that

they have opposite effects on policy parameters: a higher volatility leads to a lower elasticity, which

improves the client’s option value O1. Note that the dependence of a policy parameter (e.g., O1,

V1, and W ∗ ) on σ is only through elasticity (proposition 1), which implies that the client can

use elasticity as the key input to guide its sourcing timing decision in FP. Furthermore, we will

show in later sections that the client’s operational decision in CP contract also depends on its

corresponding elasticity (Section 4.2), and the client’s strategic decision (i.e., contract selection

decision) is solely driven by the relationship between relevant elasticities (Section 4.3).
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4.2. Cost-Plus Contract

We now establish the client’s optimal execution timing decision under CP contract. Similar to the

FP case, we define the NPV of CP contract that is exercised at the optimal time T ∗
2 as

O2(W,W2)=̇V2(W,W2)−
(

R

r
−

W

r−μ

)

. (11)

Since R
r
− W

r−μ
is the client’s contract value if CP is never exercised, O2(W,W2) can also be inter-

preted as the option value of CP. Note that we can directly show that O2(W,W2) is a homogeneous

function with degree one, which implies that O2(W,W2)/W2 becomes a one-dimensional problem

with respect to the cost efficiency ratio process {λ2(t)=̇W (t)/W2(t), t≥ 0}. Thus, instead of solv-

ing the original two-dimensional problem (i.e., O2(W,W2)), it is equivalent to solve the following

one-dimensional equation:

v2(λ2)=̇O2(W,W2)/W2.

From Ito’s quotient rule (Fries 2007), we know that λ2(t) is a GBM with the following drift rate

and volatility

μλ2
=̇μ−μ2 − ρ2σσ2 + σ2

2 and σλ2
=̇
√

σ2 − 2ρ2σσ2 + σ2
2 . (12)

Denote λ2=̇W/W2 as the cost efficiency ratio at time zero. We solve Eq. (12) and present the

client’s optimal execution timing decision under CP contract in the following proposition.

Proposition 2. The client will execute CP contract if its cost efficiency ratio λ2(t) exceeds

certain threshold λ∗
2; otherwise, the client should wait. The cost efficiency ratio threshold λ∗

2 and

the value function V2(W,W2) under the CP contract are given by

V2(W,W2) =

{
(λ2

λ∗
2
)β2( λ∗

2
r−μ

− 1+α
r−μ2

)W2 +(R
r
− W

r−μ
), if λ2 < λ∗

2 ,
R
r
− W2(1+α)

(r−μ2)
, if λ2 ≥ λ∗

2 ,
(13)

λ∗
2 =

β2

β2 − 1
(r−μ)
(r−μ2)

(1+ α), (14)

where β2 is the elasticity of the client’s option value to its cost under the CP contract satisfying

β2 =̇
1
2
−

μ−μ2

σ2
λ2

+

√(
1
2
−

μ−μ2

σ2
λ2

)2

+
2(r−μ2)

σ2
λ2

> 1. (15)

The client’s value V2(W,W2) under CP bears the similar interpretation as that under FP, where
(

λ2
λ∗
2

)β2

is the discount factor at the stopping time T ∗
2 and ( λ∗

2
r−μ

− 1+α
r−μ2

)W2 is the value after CP is

exercised at T ∗
2 .

To better explain the comparative statics of policy parameters in CP contract, we need to define

a new system measure. In particular, we denote Cov2=̇ρ2σσ2 as the covariance of the client’s and

vendor 2’s costs, and then define Cov2/σ2
2 as the correlated relative volatility (CRV) of the two
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Table 2 Comparative Statics of the Client’s Policy Parameters: the CP Contract for the Base

Model.
Policy Parameter

System Input σλ2 β2 O2, V2 λ∗
2

ρ2 − + − −
σ2 (if CRV≥ 1) − + − −
σ2 (if CRV≤ 1 ) + − + +

β2 − − −
σλ2 − + +

costs. The CRV combines volatilities and correlation of two stochastic factors into a single measure.

In our problem context, CRV represents the client’s cost volatility in relation to vendor 2’s cost

volatility measured on the percentage basis with the latter normalized to 1. In particular, CRV≤ 1

(≥ 1) indicates the client’s cost movement has a smaller (larger) magnitude compared to vendor 2’s

cost movement, which plays a key role in determining the comparative statics of policy parameters

in CP contract.

Proposition 3. Let β2, O2(W,W2) and λ∗
2 be the client’s elasticity, option value, and efficiency

ratio threshold under the CP contract. Then:

(a) σλ2
is a decreasing function of ρ2 and β2 is a decreasing function of σλ2

;

(b) O2(W,W2) and λ∗
2 are increasing in σλ2

and decreasing in β2.

(c) σλ2
is decreasing (increasing) in σ2 if CRV ≥ 1 (CRV ≤ 1).

For better visibility, we summarize Proposition 3 and its related results in Table 2. It is worth not-

ing that Part (c) also directly implies that because of symmetry, σλ2
is also decreasing (increasing)

in σ if CRV ≥ σ2

σ2
2

(CRV ≤ σ2

σ2
2
). Combining these two observations, we demonstrate that volatility

σλ2
of the cost ratio process is non-monotone in volatility of each cost process (i.e. σ2 or σ). In

the following, we will illustrate and explain this non-monotone result via the vendor 2’s volatility

(σ2), and that of the client’s volatility (σ) can be similarly discussed due to symmetry. Specifi-

cally, notice that σλ2
first decreases in σ2 until the CRV reaches 1 and increases in σ2 afterward.

Similar non-monotone patterns are also observed in β2, O2(W,W2), and λ2
∗ with respect to σ2,

which are significantly different from McDonald and Siegel (1986) page 714 and Dixit and Pindyck

(1994) page 211, who presented comparative static analyses of the two stochastic factors model

and stated that an increase in either factor’s volatility will increase the option value. Those two

apparently contradictory results can be traced back to the parameter dependency relationship of

system inputs. Specifically, we treat ρ2, σ, and σ2 as independent inputs, and covariance Cov2 as a

function of ρ2, σ, and σ2; in contrast, McDonald and Siegel (1986) and Dixit and Pindyck (1994)

take Cov2, σ, and σ2 as independent inputs, and ρ2 as a function of Cov2, σ and σ2. This begs the

question of how do the two different assumptions affect volatility of the cost ratio process σλ2
?
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Under McDonald and Siegel (1986), covariance σλ2
is not a function of ρσσ2 that is considered

as fixed. Under our model, ρσσ2 varies along with σ2, and σλ2
, and takes the minimum value when

CRV = 1 as σ2 increases. Thus, σλ2
is a non-monotone function of σ2. This explains the intuition

behind Part (c) of Proposition 3: when CRV is in the neighbourhood of 1, the cost ratio is the

most stable and the option value elasticity β2 takes the largest value. As CRV moves away from 1

in either direction, the cost ratio becomes more volatile, leading to a higher CP option value. In

the literature, both assumptions that treat either covariance or correlation as a fixed input have

been discussed by researchers (e.g., Lund (2005) page 315). However, whether to treat Cov2 or

ρ2 as a fixed system input is more than a mere technicality. A deep understanding of economic

underpinnings of the operating costs can help the client select the correct model, which may have

drastically different strategic implications. We substantiate such difference and related insights by

the following example.

Example 1. Consider a case where the operating cost includes uncorrelated (e.g., labor) and

correlated (e.g., raw materials) costs. In particular, let

W (t) = WL(t)+ WC(t), W2(t) = W2L(t)+ W2C(t) (16)

be the client’s and vendor 2’s total operating costs, respectively, including correlated raw materials

costs (WC(t),W2C(t)) and independent labor costs (WL(t),W2L(t)). We show in the following two

scenarios that the source of increasing cost volatility has different ramifications on the choice of

models.

1. Volatility of the labor cost increases: In this case, covariance of the total cost equals

covariance of the raw materials cost, denoted as Cov2C, which is unaffected by volatilities

of labor costs. However, correlation of the total operating costs, ρ2 = Cov2C/(σσ2), decreases

as volatility of either party’s labor cost increases. In fact, this is a special case studied by

Lund (2005), who shows that when the increase in volatility of a random factor is due to the

addition or multiplication of a random variable that is independent of the two random factors,

covariance is unaffected, but correlation ρ2 = Cov2σσ2 decreases as σ or σ2 increases. In such

cases, by McDonald and Siegel (1986) and Dixit and Pindyck (1994), the option value is an

increasing function of σ or σ2.

2. Volatility of the raw materials cost increases: Let the cost models be given in (16),

with the same dependence structure. Clearly, covariance of the two GBMs increases as either

party’s raw materials cost volatility increases (as discussed in the Introduction section), with

a fixed ρ. As we have shown, whether this increase in volatility of raw materials will benefit

the client or not will depend on its relation to CRV, due to the impact of covariance.
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In practice, managers should use empirical data to justify which assumption is more appropriate

for their application. In the case that changes of the volatility come from correlated sources (e.g.,

the raw materials cost in the previous example), our result reveals a deep insight: in the two random

factors analysis, it is the correlated relative volatility (i.e. the combined volatilities and correlation

of two stochastic factors), rather than only the volatility of each individual factor, that affects the

property of the option value. In the context of the CP contract, our result implies that the client’s

timing flexibility becomes more significant when its cost volatility is either much lower or much

higher relative to vendor 2’s cost volatility.

In conclusion, because of the structural difference between the CP and FP contracts, the client’s

profit in FP depends only on the client’s purchasing cost W (t) (a single factor), whereas in the

CP contract profit depends on the cost efficient ratio λ2(t) = W (t)

W2(t)
(two factors). This induces the

client to follow different operational policies in FP and CP (W ∗ vs. λ∗
2). Further, the option value

of FP contract (O1(W )) improves when W (t) has a higher volatility, but the option value of CP

contract (O2(W,W2)) improves when λ2(t) has a higher volatility, which happens when CRV is

moving away from 1 in either direction (i.e., when σ2 either increases or decreases). The implies

that a CP vendor whose cost movement is either significantly larger or smaller relative to its own

cost movement (measured by CRV) is more preferable to the client.

4.3. Contract Selection with Both Contracts Available

Comparing the values of FP and CP contracts, we can show that there exists a unique thresh-

old function S(W ) that partitions the initial cost space {W,W2} (i.e. the client’s and vendor 2’s

operating costs at time zero) into the FP and CP selection regions such that for a given W , it is

optimal for the client to select CP (FP) contract if and only if vendor 2’s initial cost W2 is below

(above) S(W ). To see, let S(W ) be vendor 2’s cost W2 for which the client’s values under the two

contracts are the same:

S(W ) =̇ {W2 : W ≥ 0,W2 ≥ 0, V1(W )≡ V2(W,W2)}. (17)

We refer to S(W ) as the contract switching curve. To analytically derive S(W ), we need to consider

the following two cases.

Case 1 β1 ≤ β2: First note that two threshold lines for the FP and CP contracts, W = W ∗ and

W2 = W/λ∗
2 (Proposition 1 and 2), partition the cost space {W ≥ 0,W2 ≥ 0} into four regions

(see Figure 1), wherein both contracts are not immediately exercisable (UU region), FP is

exercisable and CP is not (EU region), CP is exercisable and FP is not (UE region), and both

contracts are exercisable (EE region). The value functions V1(W ) in Eq. (9) and V2(W,W2)

in Eq. (13) have different expressions in each region. If β1 ≤ β2, then as W increases, S(W )
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will start from the UU region, then enter the UE region at the point W = W ′ ≤ W ∗, and

finally enter the EE region at the point W = W ∗. In this case, S(W ) will first cross the CP

threshold line and then the FP threshold line. To derive S(W ), we equalize the corresponding

expressions in Eqs. (9) and (13) in the UU, UE and EE regions, and obtain

S(W ) =






SUU(W ) = 1
λ∗
2
(β1

β2

W β2−β1

(W∗)1−β1
)

1
β2−1 , if W < W ′,

SUE(W ) =
(

W
r−μ

−W β1 (W∗)1−β1

β1(r−μ)

)
r−μ2
1+α

, if W ′ ≤W < W ∗,

SEE(W ) = C
r

r−μ2
1+α

, if W ≥W ∗,

(18)

where W ′ is the unique solution to SUE(W )≡W/λ∗
2.

Case 2 β1 ≥ β2: In this case, S(W ) starts from the UU region, enters the EU region at the point

W = W ∗, and finally enter the EE region at the point W ′′. In other words, S(W ) will first

intercept the FP threshold line W = W ∗ and then the CP threshold line λ2 = λ∗
2. Similar to

Case 1, we equalize the corresponding expressions in Eqs. (9) and (13) in the UU, EU and EE

regions to obtain S(W ):

S(W ) =






SUU(W ) = 1
λ∗
2
(β1

β2

W β2−β1

(W∗)1−β1
)

1
β2−1 , if W < W ∗,

SEU (W ) =
(

W
r−μ−C

r

W β2

β2(r−μ)

(λ∗
2)1−β2

) 1
1−β2

, if W ∗ ≤W < W
′′
,

SEE(W ) = C
r

r−μ2
1+α

, if W ≥W
′′
,

(19)

where W ′′=̇ β2
β2−1

β1−1
β1

W ∗ is the point that SEE intercepts.

Observe from Eqs. (18) and (19) that the effects of system parameters (e.g., σ, σ1, σ2, ρ and ρ2

on S(W )) are captured by β1 and β2. Therefore, the elasticities of FP and CP are the key drivers of

the client’s strategic decision. The following theorem summarizes and presents the client’s optimal

contract selection policy.

Theorem 1. (The client’s optimal contract selection policy)

(a) The client with cost W should select CP contract if vendor 2’s cost W2 is below S(W ) defined

in Eq. (18) and Eq. (19); otherwise the client should select FP contract.

(b) if β1 ≤ β2, then S(W ) is an increasing concave function of W . Specifically, SUU (W ) and

SUE(W ) are increasing concave functions of W , and SEE(W ) is an independent function of

W .

(c) if β1 ≥ β2, then S(W ) is a decreasing convex function of W . Specifically, SUU (W ) and SEU (W )

are decreasing convex functions of W , and SEE(W ) is an independent function of W .

Part (a) of Theorem 1 states that when both contracts are available, the client’s optimal contract

selection policy is to select CP if vendor 2’s cost is less than S(W ), and FP otherwise. Borrowing

jargons from the inventory literature, we will refer to the client’s optimal contract selection policy
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Figure 1 The contract switching curve S(W ) for the Base Model:

Left figure, β1 ≤ β2; Right figure, β1 ≥ β2.

as the select-up-to (SUT) policy. Part b can be intuitively understood as follows: SUU (W ) is the

indifference curve when both contracts are not exercisable. When the option values of the two

contracts are the same, O2 ≡O1, the difference of their marginal option values satisfies ∂O2
∂W

− ∂O1
∂W

=

(β2 −β1)
O2
W

= (β2 −β1)
O1
W

, so the contract with the larger option value elasticity will have a higher

marginal option value with respect to the cost, and become more attractive to the client as its cost

increases. Figure 1 presents S(W ) in two cases and shows that the contract with a larger elasticity

generates a higher option value with respect to the client’s cost and is more beneficial to the client

as its cost increases. Note that when β1 = β2, S(W ) = C
r

r−μ2
1+α

is a constant curve.

There are two strategic scenarios in Figure 1 as a direct consequence of Theorem 1. First look at

the “upward triangular” area (i.e., the shaded area on the left-hand-side of Figure 1) constrained by

the function SUE(W ) in Eq. (18) and the two threshold lines. Recall that when β1 < β2, the S(W )

first intercepts the CP threshold line and then the FP threshold line. Therefore, in this “upward

triangular” area, Theorem 1 suggests a less intuitive contract selecting policy: instead of selecting

the immediately exercisable CP contract, the client should choose the currently un-exercisable

FP contract and wait for the best execution time. In other words, even through CP is currently

exercisable, the potential benefits from waiting to execute FP in the future (i.e. the option value

of FP) is more attractive. We therefore refer to this area as the FP-oriented mothball region.

Similarly, when β1 > β2, S(W ) first intercepts the FP threshold line and then the CP threshold

line. We call the “downward triangular” area enclosed by SEU (W ) defined in Eq. (19) and the

two threshold lines (see the right figure of Figure 1) the CP-oriented mothball region, where the

client is better off selecting the currently un-exercisable CP contract than choosing the immediately

exercisable FP contract.

These two mothball regions are counter-intuitive in the sense that the client in practice tends

to select the contract that is immediately exercisable. However, these mothball regions identified

in this paper suggest that such a perception may result in not only a sub-optimal sourcing timing
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decision, but also an incorrect contract commitment. To help the client decide whether an immedi-

ately available contract should be passed over in favor of a currently not exercisable contract (i.e.

identify the mothball regions), a simple comparison between elasticities can serve as an intuitively

appealing criteria.

In the reminder of this section, we further examine the comparative statics of the contract selec-

tion curve S(W ) with respect to system inputs, which are summarized in the following proposition.

Proposition 4. For any client’s cost W ,

(a) S(W ) is decreasing in ρ2.

(b) S(W ) is decreasing (increasing) in σ2 if CRV is larger (less) than 1.

(c) S(W ) is decreasing in β1 and increasing in β2.

We now explain the intuition behind Proposition 4. First, when the cost processes of the client

and vendor 2 are more correlated, V2(W,W2) decreases but V1(W ) remains the same, which implies

that the FP selection threshold S(W ) will be reduced. In other words, the client is more likely to

select FP when ρ2 increases. Second, when CRV is greater (less) than 1, the client’s cost movement is

more (less) volatile relative to vendor 2’s cost movement. Directly, increasing σ2 reduces (increases)

volatility σλ2
and V2(W,W2). Since V1(W ) is not affected by σ2, the FP selection threshold S(W )

will be reduced (increased). Therefore, the client is more likely to select FP (CP) when σ2 increases

(decreases) until σ2 reaches ρ2σ (i.e. CRV reaches 1). Finally, the comparative static of S(W ) with

respect to βi, i = 1,2, can be similarly explained, and these results echo our previous discussion:

the contract with a larger elasticity generates a higher option value with respect to the client’s cost

and is more beneficial to the client as its cost increases.

To conclude, we suggest several rules of thumb in the client’s strategic decision when both

contracts are available: (1) use the simple “select-up-to” (SUT) rule to make the contract selection

decision (see Theorem 1 (a)); (2) the contract with the smaller option value elasticity becomes

more attractive when the client’s initial operating cost increases (see Theorem 1 (b) and (c)); (3)

it could be more profitable to select a currently un-exercisable contract with a lower elasticity over

an immediately exercisable contract with a higher elasticity (the mothball regions in Figure 1);

and (4) FP becomes more favorable when CRV moves toward 1, while CP becomes more attractive

when CRV moves away from 1 in either direction (Proposition 4 (b)).

5. Vendors’ Contract Participation Problems

In this section, we study the contract selection problem from the vendor’s perspective by exam-

ining their participation constraints of the FP and CP contracts, formulated in Eqs. (3) and (4)

respectively.
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5.1. Participation of Fixed Price Contract

When evaluating the potential value of FP contract, vendor 1 needs to take the client’s execution

timing decision T ∗
1 into account (see Eqs. (3)). Incorporating the client’s optimal FP contract

execution timing decision (Proposition 1), the next proposition explicitly derives the FP contract

value from vendor 1’s perspective.

Proposition 5. Vendor 1’s FP contract value is

U1(W,W1) =

{
( W

W∗ )β1 C
r
− ( W

W∗ )β̃1 W1
r−μ1

, if W < W ∗,
C
r
− W1

r−μ1
, if W ≥W ∗,

(20)

where β̃1 is the elasticity of vendor 1’s cost with respect to the client’s cost and is given by

β̃1 =̇
1
2
−

μ + ρ1σσ1

σ2
+

√(
μ + ρ1σσ1

σ2
−

1
2

)2

+
2(r−μ1)

σ2
. (21)

The two terms in vendor 1’s contract value function, Eq. (20), represent its expected revenue (i.e.,

the client’s payment) and operating cost. It is worth noting that β̃1 and β1 are, respectively, the

elasticities of vendor 1’s expected cost and revenue with respect to the client’s cost W . Compared

to the client’s FP contract value contingent only on W and β1, vendor 1’s FP contract value is

more complex and contingent on both parties’ costs (W , W1) and elasticities (β1, β̃1).

Recall that vendor 1 will participate if and only if its FP contract value is no less than its reser-

vation (i.e. , U1(W,W1)≥ ξ1). Let P1(W ) be vendor 1’s participation indifference curve satisfying

U1(W,P1(W )) ≡ ξ1. From Eq. (20) in Proposition 5, we can directly show that for a given W ,

U1(W,W1) crosses ξ1 exactly once. Thus P1(W ) is given by

P 1(W ) =
{

( W
W∗ )β1−β̃1 C(r−μ1)

r
− ξ1( W

W∗ )−β̃1(r−μ1), if W < W ∗,
(C

r
− ξ1)(r−μ1), if W ≥W ∗.

(22)

The following theorem states vendor 1’s optimal contract participation policy and related compar-

ative statics of P1(W ).

Theorem 2. (Vendor 1’s optimal contract participation policy)

(a) Vendor 1 should offer the FP contract if and only if its cost W1 is no larger than P1(W )

defined in Eq. (22).

(b) P1(W ) is increasing concave function in β̃1, which decreases in ρ1 and σ1.

(c) P1(W ) increases in W if β1 ≥ β̃1(1−
ξ1r
C

), or if β1 ≤ β̃1(1−
ξ1r
C

) and W ≤W ∗( ξ1r
C

/(1− β1

β̃1
))

1
β1 ;

and decreases in W otherwise.

The first part of Theorem 2 states that given the client’s cost W , vendor 1 should offer FP if

and only if its own cost W1 is sufficiently low (i.e., W1 ≤ P1(W )). We therefore refer to vendor 1’s

optimal contract participation policy as the “participate-up-to”(PUT) policy, with the participation
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Figure 2 The FP participation curve P1(W ) for the Base Model:

Left figure, β1≥(1− ξ1r
C

)β̃1; Right figure, β1≤(1− ξ1r
C

)β̃1.

threshold determined by the revenue and cost elasticities (see Eq. (22)). The second part shows

that as vendor 1’s cost becomes less volatile or less correlated with the client’s cost, vendor 1’s cost

elasticity β̃1 increases, which reduces vendor 1’s cost and thus the participation threshold P1(W ).

This result is not surprising, as each player prefers its own cost to be low.

It is intuitive to believe that P1(W ) increases in W since it expedites the FP execution, which

potentially improve the vendor’s contract value. However, the last part of Theorem 2 states other-

wise and shows that P1(W ) is a non-monotone function of W . For illustration, Figure 2 displays

vendor 1’s participation regions for two scenarios and shows that a higher W encourages (discour-

ages) vendor 1 to offer FP only when vendor 1’s revenue elasticity β1 is sufficiently large (small)

relative to its cost elasticity β̃1. To explain, note that the changes of W lead to two conflicting

effects: improve vendor 1’s revenue (because the client execute early) and potentially increase ven-

dor 1’s production cost (because of the cost correlation between the client and vendor 1). Therefore,

only when the percentage change of vendor 1’s revenue to the percentage change of W (i.e. β1)

is proportionally higher (lower) than the percentage change of vendor 1’s cost to the percentage

change of W (i.e., β̃1), vendor 1’s participate threshold (i.e., P1(W )) will increase in W .

It is direct to argue that vendor 1’s value function, U1(W,W1), should share similar comparative

static properties of P1(W ), since when vendor 1’s value U1(W,W1) increases, its participation

threshold P1(W ) also increases. Therefore, our discussion of the properties of P1(W ) also applies

to U1(W,W1). The following proposition summarize the main results of the properties of vendor

1’s value function.

Proposition 6. If σ2 < 2(r−μ1), then

(a) U1(W,W1) is increasing concave in β̃1.

(b) ( W
W∗ )β1 is increasing in β1 if W

W∗ ≥e
−1

β1−1 , and decreasing in β1 otherwise.
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(c) U1(W,W1) is decreasing in β1 if 1 > W
W∗ ≥ e

−1
β1−1 and W1 ≤ P̃1(W ), and is increasing in β1

otherwise, where P̃1(W ) is vendor 1’s cost threshold under which the marginal effect of β1 to

its revenue and cost are the same and is given by

P̃1(W )=̇
β1(β1 − 1)

β̃1

P1(W )
(

ln(
W

W ∗
)+

1
β1 − 1

)

, where 1 >
W

W ∗
≥ e

−1
β1−1 . (23)

(d) U1(W,W1) is increasing in W if β1 ≥ β̃1
W1r

C(r−μ1)
( W

W∗ )β̃1−β1 , and decreasing in W otherwise.

It is noteworthy that the second part of this proposition presents an unexpected property of

the discount factor ( W
W∗ )β1 (i.e., E

[
e−rT∗

1 |W < W ∗
]
). Specifically, Harrison (1985) shows that when

μ > 1
2
σ2, the expected stopping time, E[T ∗

1 |W < W ∗] = ln(W∗/W )

μ− 1
2 σ2 , decrease in β1. In addition, we

have shown that the option value O1(W ) is decreasing in β1 (see Table 1). Based on these two

results, one could infer that the discount factor should decrease in β1. This intuition, however, is

not true. As seen in part (b) of Proposition 6, the discount factor ( W
W∗ )β1 is actually decreasing

in β1 only when W is sufficiently small relative to W ∗ (i.e., the ratio W
W∗ is less than the fraction

e
−1

β1−1 ), otherwise the opposite is true. We can understand this result as follows: when W is far

smaller than W ∗, the discount factor indeed becomes bigger with a smaller elasticity value. In

this case, vendor 1 benefits from a smaller value of β1. However, if W is sufficiently close to W ∗,

the discount factor actually becomes smaller with a smaller value of β1. In this case, the client

tends to expedite the FP execution timing. In other words, the comparative statics of vendor 1’s

revenue, ( W
W∗ )β1 C

r
, in β1 depends on system state W . Because of this state-dependent monotonicity

of the discount factor explained above, the comparative statics of U1(W,W1) in β1 and W is also

state-dependent (i.e., the third and fourth parts of Proposition 6).

To summarize, we obtain several insights for FP contract participation decision: (1) the vendor

should use the simple “participate-up-to” (PUT) rule (see Theorem 2 (a)); (2) the vendor is more

willing to offer FP contract if cost elasticity (β̃1) is high, cost correlation (ρ2) is low, cost volatility

(σ2) is low (see Theorem 2 (b)); (3) the vendor’s contract value function exhibits a non-monotonic

pattern with respect to its revenue elasticity (β1) and the client’s initial cost (W ) (see Proposition

6). Those insights help the client identify the FP vendor who is most likely to participate.

5.2. Participation of Cost-Plus Contract

In this subsection, we examine vendor 2’s participation condition. Similar to the case of FP contract,

we derive and present vendor 2’s CP contract value U2(W,W2) in the following proposition.

Proposition 7. Vendor 2’s CP contract value is

U2(W,W2) =

{
αW2
r−μ2

(λ2
λ∗
2
)β2 , if λ2 < λ∗

2,
αW2
r−μ2

, if λ2 ≥ λ∗
2.

(24)

Moreover,
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(a) U2(W,W2) is decreasing in β2 and ρ2 and increasing in σλ2
if λ2 ≤ e

−1
β2−1 λ∗

2; and is increasing

in β2 and ρ2 and decreasing in σλ2
otherwise.

(b) U2(W,W2) increases (decreases) in σ2 if λ2/λ∗
2 ≤ e

−1
β2−1 (λ2/λ∗

2 > e
−1

β2−1 ) and CRV ≥ 1 (

CRV < 1).

(c) U2(W,W2) is a decreasing (an increasing) function of W2 if λ2 < λ∗
2 (λ2 ≥ λ∗

2); U2(W,W2) is

an increasing function of W .

Vendor 2’s contract value given in Eq. (24) can be understood intuitively: if λ2 < λ∗
2, the CP

execution will be postponed (Proposition 2) so that vendor 2’s revenue is its profit αW2
r−μ2

multiplied

by the discount factor ( λ2
λ∗
2
)β2 ; otherwise, CP will be executed immediately and vendor 2 earns

undiscounted profit of αW2
r−μ2

. The rest of Proposition 7 characterizes the comparative statics of

vendor 2’s contract value function U2(W,W2). Similar to that of Proposition 6, due to the state-

dependent nature of the discount factor ( λ2
λ∗
2
)β2 with respect to β2 and the non-monotonicity of β2

with respect to σ2, the U2(W,W2) is also state-dependent and non-monotone in system parameters

(e.g., σ2, W2, σλ2
, ρ2, and β2).

It is interesting to compare and contrast the comparative statics of the client to those of vendor

2 under the CP contract. Recall that the monotone direction of V2(W,W2) with respect to σ2

depends on whether CRV ≥ 1 but is state-independent. From Table 2 and Proposition 7, we obtain

Table 3, in which the thresholds CRV = 1 and λ2 = λ∗
2e

−1
β2−1 partition the space {σ2 ≥ 0, λ2 > 0}

into four areas, such that in each area, the two decision makers may have either common interests

(the change direction of contract values is consistent for both the client and vendor 2) or conflicts

of interest (the contract values have the opposite change directions for the client and vendor 2).

In particular, at the lower-left (upper-right) quadrant (i.e., the client’s cost movement is smaller

(larger) compared to vendor 2’s cost movement and the cost ratio is lower (higher) than the

threshold W
W2

= λ∗
2e

−1
β2−1 ), then both decision makers benefit from a more volatile (stable) W2 (i.e., a

win-win scenario). The intuition is that at the lower-left (upper-right) quadrant, when σ2 increases

(decreases), CRV will move further to the left (right) of the threshold CRV = 1, which improves

the client’s profit; in the meantime, the two conditions CRV ≥ 1 and W
W2

≤ λ∗
2e

−1
β2−1 (CRV ≤ 1 and

W
W2

≥ λ∗
2e

−1
β2−1 ) ensure that vendor 2’s discount factor increases in λ2, which subsequently improves

its profit. Due to symmetry, all the results in Table 3 remain valid if σ2 is replaced by σ.

Next, we derive vendor 2’s optimal CP contract participation policy. Given (W,W2), vendor 2

will offer the CP contract if and only if U2(W,W2)≥ ξ2. Note that the two expressions of U2(W,W2)

in Eq. (24) cross each other at W = ξ2λ∗
2(r−μ2)

α
. This means that when W <

ξ2λ∗
2(r−μ2)

α
, vendor 2

could not meet its participation constraint and thus will not offer CP. When W ≥ ξ2λ∗
2(r−μ2)

α
, we
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Table 3 Comparative Statics of V2 and U2 with respect to σ2 : the CP contract for the Base Model.
System state λ2

λ2
λ∗
2
≤ e

−1
β2−1 λ2

λ∗
2
≥ e

−1
β2−1

V2 U2 V2 U2

σ2 (Cov2
σ2
2

≥ 1) − + − −

σ2 (Cov2
σ2
2

≤ 1) + + + −

then denote vendor 2’s participation indifference curve as P2(W ), i.e., U2(W,P2(W )) ≡ ξ2, and

present it as follows:

P2(W )=̇

{
P H

2 (W )=̇( W
λ∗
2
)

β2
β2−1 ( α

(r−μ2)ξ2
)

1
β2−1 , if λ2 < λ∗

2,

P L
2 (W )=̇ (r−μ2)ξ2

α
, if λ2 ≥ λ∗

2.
(25)

The following theorem summarizes the above discussion and vendor 2’s participation policy.

Theorem 3. (Vendor 2’s optimal CP contract participation policy)

(a). Vendor 2 will offer the CP contract if and only if P L
2 (W )≤W2 ≤ P H

2 (W ) and W ≥ ξ2λ∗
2(r−μ2)

α
.

(b). When λ2 ≤ λ∗
2, P2(W ) is increasing in β

2
if λ∗

2
(r−μ2)ξ2

α
e≤ W ≤ λ∗

2W2, and decreasing in β2 if

λ∗
2

(r−μ2)ξ2
α

≤W < λ∗
2

(r−μ2)ξ2
α

e.

Figure 3 depicts vendor 2’s participation region and illustrates that given W ≥ λ∗
2

ξ2(r−μ2)

α
, vendor

2’s participation is determined by two threshold functions P L
2 (W ) and P H

2 (W ) given in Eq. (25). To

understand, note that vendor 2’s profit is the highest at the point where W/W2 = λ∗
2 (Proposition

7 (c)). When W2 decreases, the cost efficiency ratio moves to the CP execution region (W/W2 ≥

λ∗
2) and vendor 2’s expected profit αW2

r−μ2
is decreasing in W2. As W2 reaches the lower bound

P L
2 (W ) = (r−μ2)ξ2

α
, vendor 2’s profit reaches the participation indifference point U2(W, (r−μ2)ξ2

α
) = ξ2.

Therefore, when the cost efficiency ratio is in the CP execution region, vendor 2 prefers its cost to

be as high as possible (so that the revenue from the client will be high as well), and will not offer

CP if its cost is too low. Conversely, when W2 increases and the cost efficiency ratio moves from

λ∗
2 to the CP non-execution region ( W

W2
≤ λ∗

2), then because the profit increases at a linear rate but

the discounting occurs at a faster rate β2 > 1, vendor 2’s expected profit αW2
r−μ2

(λ2
λ∗
2
)β2 is decreasing

in W2. When W2 reaches the upper bound P H
2 (W ), vendor 2’s profit reaches the break-even point

U2 = ξ2. Therefore, when the cost ratio is in the CP non-execution region, vendor 2 prefers its cost

to be as low as possible to induce a faster CP execution.

Hereafter, we will refer to vendor 2’s optimal CP participation policy as the “participate-in-

between” (PIB) policy. Note that for the special case where ξ2 = 0, we have P L
2 (W ) = 0 and

P H
2 (W ) =∞, which is as expected: since when U2 ≥ 0, vendor 2 will always offer the CP contract.

In summary, in this section we derive vendor 2’s contract value and its optimal participation

policy. We show that vendor 2 should offer CP only when W is not too low and should use the
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Figure 3 Vendor 2’s CP participation curve P2(W ) for the Base Model.

“participate-in-between” rule (see Theorem 3 (a)). Via the analyses of comparative statics, we

identify the key characteristics that induce a higher likelihood of vendor 2’s participation: (1) a low

elasticity β2 if λ2 is sufficiently low, or a high elasticity β2 if λ2 is sufficiently high (Proposition 7 (a));

(2) a cost efficiency ratio that is sufficiently close to λ∗
2 (Proposition 7 (c)); and (3) in certain cost

regions both players prefer a lower elasticity value β2 (Table 3). Accordingly, these characteristics

offer the guidelines for the client to select a CP vendor who is most likely to participate.

6. Client’s Constrained Contract Selection

Now, we return to the original client’s contract selection problem under vendors’ participation

constraints. Through combining the client’s contract selection policy (Theorem 1) with the vendor

participation constraints (Theorem 2 and 3), the following theorem presents the client’s optimal

contract selection policy.

Theorem 4. The client’s optimal constrained contract selection policy is determined by the

following selection function:

SC(W,W1,W2)=̇






No, if W1 > P1(W ) and W <
ξ2λ∗

2(r−μ2)

α
,

or if W1 > P1(W ), W ≥ ξ2λ∗
2(r−μ2)

α
, and P H

2 (W ) < W2 or P L
2 (W ) > W2;

CP, if W1 > P1(W ), W ≥ ξ2λ∗
2(r−μ2)

α
, and P L

2 (W )≤W2 ≤ P H
2 (W ),

or if W1 ≤ P1(W ), ξ2λ∗
2(r−μ2)

α
< W , and PL

2 (W )≤W2 ≤min{S(W ), P H
2 (W )};

FP, otherwise.

(26)

Theorem 4 can be visualized by coupling the vendor’s participation functions P1(W ) and P2(W )

(Figures 2 and 3) with the client’s contract selection function S(W ) (Figure 1). In particular,

the intercepts of the three curves, S(W ), P1(W ) and P2(W ), partition the three-dimensional cost

space {W ≥ 0,W1 ≥ 0,W2 ≥ 0} into CP, FP, and No contract (both vendors decline to participate)

selection regions. The No contract regions follow from the condition that FP will not be offered

(see Theorem 2 (a)) and the condition that CP will not be offered (Theorem 3 (a)). Further, we can

identify two regions in which CP will be selected: in the first region only CP is offered (Theorems

2 and 3); in the second region both CP and FP are offered, but by Theorem 1, the client selects
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CP because W2 ≤ S(W ). In all other areas, the FP contract will be selected: either because only

FP is offered or because both FP and CP are offered but FP is in favor.

There are 4 scenarios of the partition SC(W,W1,W2) depending on β1/(1− ξ1r
C

) ≥ (≤)β̃1 and

β1 ≥ (≤)β2, which determine the functional properties of P1(W ) and S(W ) (see Figure 1 and 2).

Through a systematic and extensive numerical study of those 4 scenarios, we observe that all the

scenarios share similar structure. Therefore, we only present and illustrate, in Figure 4, an example

of the partition SC(W,W1,W2) under the scenario β1/(1− ξ1r
C

) ≥ β̃1 and β1 ≤ β2 in the three-

dimensional space (the left figure). In this figure, the vertical surface is the participation curve

for FP contract (i.e., P1(W )), and vendor 1 will offer this contract as long as its own operation

cost (i.e., W1) is lower than its participation curve; the participation curve of CP contract (i.e.,

P2(W )) consists of two pieces–the horizontal P L
2 (W ) surface and the increasing P H

2 (W ) surface; the

client’s contract selection/switching curve (i.e., SC(W,W1,W2)) intercepts and separates vendors’

participation curves (i.e., P1(W ) and P H
2 (W )).

For a better visualization, we also provide a two-dimensional figure (the right figure of Figure 4),

in which we fix vendor 1’s initial cost at 45, i.e., W1 = 45. Clearly, as vendor 1’s initial operating

cost is fixed, it will offer FP contract when the client’s initial cost is not too low (e.g., the right

region to the dash-dot P1(W ) line according to Theorem 2,); vendor 2 offers CP contract when

its operating cost is neither too low nor too high comparing to the client’s cost (e.g., enclosed

by the dash P2(W ) lines according to Theorem 3). Therefore, when both vendors prefer not to

offer contracts (e.g., W ≤ 50), we observe the No Contract Region. As the client’s operating cost

increases (e.g.,W > 50), vendor 1 starts offering FP contract. Obviously, it is always beneficial for

the client to have a contract with the execution flexibility than without, so the client chooses the

only available contract–the FP contract (e.g., FP Region). As the client’s operating cost further

increases, vendor 2 begins offering CP contract. Facing the choice of these two contracts, the client

will select CP contract when vendor 2’s operating cost is not too high (so that the client’ sourcing

cost, proportionally to vendor 2’s operating cost, is not too high). In other words, the CP Region

is below the switching curve S(W ). Finally, it is worth noting that if we use a higher vendor 1’s

initial operating cost (W1) to generate this two-dimensional figure, then we should expect that the

vendor 1 is less willing to offer FP contract (i.e., P1(W ) curve move to the right) and CP contract

is more likely to be chosen (i.e., CP Region becomes larger comparing to FP Region).

Evidently, with vendor’s participation constraints imposed, the client’s contract selection space is

much limited. Nevertheless, by soliciting two contracts of different types rather than one contract of

a particular type, the client can significantly increase its selection space and enlarge the likelihood

of reaching an agreement with a willing partner.
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Figure 4 The client’s contract selection regions in the Base Model:

Left figure, 3 dimensions; Right figure, 2 dimensions where W1 is fixed at 45.

Notes: The specific parameter values used to generate this figure are r = 0.06, R = 300, C = 100,

α = 0.05, μ = μ1 = μ2 = 0.01, σ = σ1 = σ2 = 0.15, ρ1 = ρ2 = 0.5, and ξ1 = ξ2 = 50.

7. Extension and Discussion
7.1. General contract expiration time and liquidation cost

In previous sections, for analytical tractability, we focus on the Base Model with an infinite contract

expiration time and a negligible liquidation cost (i.e., TE =∞ and K = 0). In this section, we will

relax these assumptions to demonstrate the robustness of our results and insights gained from the

previous sections and to discuss the impacts of the contract expiration time and liquidation cost.

Similar to the analyses of the base model, we first consider the value function under FP, defined

in Eq. (5), with TE <∞ and K 6= 0. This problem is equivalent to a finite-horizon American option

and we refer to Shreve (2000, Section 8.4) for analytical details, which are based on optimal stop-

ping theory developed by Van Moerbeke (1979). The FP contract execution problem consists of

identifying a time-dependent threshold function W ∗(t), for 0 ≤ t ≤ TE , such that FP is exercised

if and only if W (t) ≥ W ∗(t) to maximize the client’s value starting from time 0. On the other

hand, when CP contract is selected, the optimal execution timing problem consists of identifying a

threshold function λ∗
2(t), for 0≤ t≤ TE, such that CP is exercised if and only if λ2(t)≥ λ∗

2(t). Then,

the optimal sourcing time functions W ∗(t) and λ∗
2(t), are embedded in vendors’ value functions

U1(W,W1) and U2(W,W2), respectively, to determine vendors’ contract participation functions

P1(W ) and P2(W ) and client’s contract selection function S(W ). At last, we calculate those func-

tions through implementing the least-squares method proposed by Longstaff and Schwartz (2001).

The procedure is based on Monte Carlo simulation with 10,000 paths and 50 time steps.

Using the same parameter combinations as in the base model, we conduct the robustness test for

all four scenarios of the general case, depending on β1/(1− ξ1r
C

)≥ (≤)β̃1 and β1 ≥ (≤)β2, through

varying the value of the contract expiration time and the liquidation cost (i.e., TE and K). We find

that the FP and CP selection regions and the switching curves in the general case (TE < ∞ and
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Figure 5 The client’s contract selection regions in the general case (W1 is fixed at 45):

Left figure, TE = 50 and K = 0; Right figure, TE = 50 and K = 200.

Notes: All parameter values, except TE and K, are consistent with those of Figure 4.

K 6= 0) resemble their counterparts in the base model and therefore conform with the explanations

derived before. Although our results and insights from the base model are qualitatively resilient to

the general case, we observe that the contract expiration time TE and the liquidation cost K could

quantitatively influence FP and CP selection regions and the switching curves. For illustration

(other cases are omitted for similarity), we extend the two-dimentional figure of Figure 4 (i.e.,

the base model) to the general case, and present the FP and CP selection regions in Figure 5.

Particularly, in the left figure of Figure 5, we hold the liquidation cost at zero (i.e., K = 0) and

allow both FP and CP contracts to expire at time TE = 50. In the right figure of Figure 5, not only

both contracts expire at time TE = 50, the client will incur a positive liquidation cost to execute

any supply contract (e.g., K = 200).

Similar to the base case, the movement of the client’s switching curve, S(W ), depends on system

parameters, but the magnitude of the influences of TE and K on S(W ) is relatively small (e.g.,

comparing the right figure of Figure 4 to Figure 5). This observation is not surprising: changing

terms of contracts have a marginal influence on the client’s choice over these two contracts, as long

as the same changes are applied to both contracts. On the other hand, from vendors’ perspectives,

the changes of TE and K have significant impacts in valuating these two contracts, and the move-

ment of the vendors’ participation curves actually exhibit monotonic properties with respect to TE

and K. Specifically, decreasing contract expiration time (i.e. sourcing the client’s operations for a

shorter period of time) reduces the value of the contract to its vendor. Accordingly, vendors will

only offer contracts to the client with a high operating cost, under which the client will execute

its contract earlier and therefore increases the value of contract to its vendor. In other words, the

FP and CP participation curves move to the right (i.e., supply contracts will be offered to client

with a high initial operation cost). Similarly, the client favors an early execution when facing a

low liquidation cost (i.e., K is small or even negative), which increases the contract value to its
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vendor. In turn, vendors are more willing to offer supply contracts if the client has a low liquidation

cost–FP and CP participation curves move to the left as liquidation cost decreases.

7.2. The sign-up cost for option contracts

In previous sections, following the literature (e.g.,Barnes-Schuster et al. 2002, Li and Kouvelis

1999), we assume both FP and CP option contracts are “free” to the client (i.e., the client does not

need to pay at time zero when signing the contract with its vendor). Yet, when committing to the

contract, the vendor needs to build up or reserve its capacity, which can be quite costly. Therefore,

it seems to be fair and reasonable to compensate the vendor with a monetary sign-up payment,

P , up-front when the contract is signed. Furthermore, the sign-up payment could also serve as a

commitment device to guarantee the exclusivity of supply contract between the client and vendor,

as it will become cost inefficient for the client to sign up multiple option contracts. This sign-up

payment can be incorporated into our model by setting the revised opportunity cost for vendor i,

ξ̃i, and the revised client’s revenue rate, R̃, as follows: ξ̃i = ξi−P and R̃ = R− ((P ∙r)/(1−e−r∙TE )).

We observe that as the contract price or sign-up payment increases, vendor 1’s participation

curve, P1(W ), decreases (i.e., moves to the left in the two-dimensional figure where W1 is fixed); ven-

dor 2’s upper participation curve P H
1 (W ) increases and lower participation curve P L

1 (W ) decreases

(i.e., P H
1 (W ) moves up and P L

1 (W ) moves down in the two-dimensional figure); and the client’s

contract selection curve S(W ) remains largely unchanged. All those observations can be directly

proved for the base model. Intuitively, these results are not surprising. With the additional payment

from the client, the vendor will be more willing to offer the contract to the client.

7.3. The value of the time-flexible option

As the client may need to pay a nontrivial cost upon signing the contracts to encourage its vendors

offering option contracts, gauging the benefits of the time-flexible option becomes increasingly

critical for the client to justify the adoption of option contracts. We therefore analyzed an additional

NPV model, in which non-option FP and CP contracts are offered, and therefore the client will

need to execute the contract immediately upon signing.

The analysis and results of this NPV model for the supply contracts without the option are

similar to that of the base model (and therefore omitted). For example, both contracts yield

threshold-type optimal execution decisions, and the optimal contract selection decision continues

to follow a select-up-to policy. Figures 6(a) and 6(b) illustrate the client’s contract selection and

execution decisions for the NPV model (i.e., contracts without the time-flexible option) and the

Base model, respectively. First, we observe that when supply contracts are offered together with the

time-flexible option, the client always prefers to contract with the vendors (i.e., the No-Contract

Region is absent). In particular, in the NPV’s No-Contract Region, the client would select either
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Figure 6 The contract execution threshold curves and the contract switching curve for the NPV Model and the

Base Model where β1 ≥ β2.

the FP contract or the CP contract and wait for the optimal execution time. Second, contract

selection regions (as segmented by the switching curve) are different between these two models. In

the NPV model, the switching curve is a constant horizontal line and invariant with respect to the

spot market cost. This observation comes directly from the fact that the client’s expected profits

under the FP contract are invariant to the spot market cost. However, when the optimal execution

timing decisions (under the option contracts) are taken into consideration, the switching curve will

exhibit a monotonic pattern with respect to the spot market cost. Third, with the time-flexible

option, the vendor is less likely to execute its contract immediately. In particular, when the client

obtains the time-flexible option in its supply contracts, the immediate execution threshold for the

FP contract (i.e., the dot-dash line) moves far to the right – the option FP contract requires a

higher spot market cost to trigger contract execution. As with the time-flexible option, the client

could cautiously monitor the dynamics of the spot market cost and execute the contract only when

there is sufficient evidence that the spot market cost will be consistently high, in order to avoid

rushing into execution decisions and locking itself into a binding contract with a fixed cost. A

similar argument applies to the CP contract.

At last, we assess the value of the time-flexible option by comparing the client’s profit function

under the base model V (W,W2) to that under the NPV model V NPV (W,W2). Analytically, we can

show that the client always prefers the time-flexible option contracts over non-option contracts

(i.e.,V (W,W2) ≥ V NPV (W,W2) ). Moreover, consistent with previous analysis in Section 4, the

time-flexible option value increases when ρ2 is decreasing or when CRV is moving away from

1 in either direction. Further, we performed an additional numerical study for 500 parameter

combinations to gauge the value of option, V (W,W2)/V NPV (W,W2)−1 and found that the time-

flexible option brings substantial benefits (i.e., on average,10.22% improvement in profit) to the

client.
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8. Conclusion

This paper adopts the real options framework to investigate a client’s optimal supply contract

selection and execution timing decisions, subject to vendors’ participation constraints. From the

modeling perspective, this paper consists two unique features that have not been well understood

in the literature: the client’s time-flexible supply contract selection problem and the contract par-

ticipation problems faced by vendors.

Through modeling from both the client’s and the vendors’ perspectives, we advance the theo-

retical RO theory and derive appealing strategic and operational policies. In particular, from the

client’s side, we enhance the RO theory by developing strong analytical results for the client’s

optimal value function and contract selection policy structure (i.e. the select-up-to policy), and

investigate their comparative statics. From the vendors’ side, we incorporate the client’s waiting

flexibility into vendors’ value functions to obtain the vendors’ optimal participation policies (i.e.

the participate-up-to policy for FP contract and participate-in-between policy for CP contract).

These new results propel the existing RO theory and make the RO approach more complete and

appealing to practitioners.

We also offer several new managerial insights that either have not been discussed in the literature

or are contrary to conventional beliefs. By comparing the FP and CP contract values, we reveal

two strategic scenarios, the FP- and CP-oriented mothball regions, in which the client is better off

not exercising the immediately exercisable contract but selecting the other currently unexercisable

contract and waiting for its best execution timing. The mothball region scenarios caution managers

against early commitment to an incorrect contract form, even if this contract is profitable and

immediately exercisable.

In addition, we reveal the significant role played by elasticities in each firm’s strategic contract

selection and participation decisions, and obtain simple rules of thumb to determine the impact of

elasticities on the firm’s strategic policy, which appeals to managerial intuition and eases implemen-

tation. Contrary to the conventional belief (e.g. McDonald and Siegel 1986 and Dixit and Pindyck

1994), we also show that the client’s option value of CP contract does not necessarily increase

in either vendor’s or client’s cost processes. To explain, we adopt Correlated Relative Volatility

(CRV) to gauge the relative cost volatility of the client in relation to the vendor and show that

CRV is the key driver to determine the comparative statics of the optimal contract value and par-

ticipation functions. In particular, we demonstrate that the CP contract’s option value increases

as the difference between those two cost volatility becomes more significant (i.e., CRV moves away

from 1 in either direction). This non-monotonicity of policy parameters in CP contract value also

offers opportunities to both firms where a high cost volatility can benefit both the client and the
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vendor. Further, we capture the fundamental difference between the vendor and clients compar-

ative properties: while the former is state-dependent (either U or reverse-U shaped) in a system

input (such as volatility), the latter is typically monotone and state-independent. An implication

of this result is that the supply contract partners do not necessarily have conflicts of interest so

both parties should explore the opportunities that are mutually beneficial (i.e., win-win for both

the vendor and the client). These managerial insights provide practical guidance on how supply

contracts should be effectively managed.
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Appendix A: Proof of Proposition 1

It is optimal for the client to exercise the FP contract as soon as its operating cost W (t) exceeds a threshold

value W ∗ (Shreve 2004, Section 8). Eq. (5) needs to satisfy (i) the boundary condition V1(0) = R
r
, because

cost process W (t), modeled as a GBM, has an absorbing barrier 0; (ii) the “value matching” condition

V1(W ∗) = R−C
r

− K, since the client receives a net payoff R−C
r

at the execution time of FP; and (iii) the

“smooth pasting” (or “high contact”) condition ∂V1(W
∗)

∂W
= 0 coming from optimality (Dixit and Pindyck

1994).

While the operation is still to purchase from the spot market at time t , the client is in the continuation

region and produces a net cash flow R − W (t) over an infinitesimal time interval dt. As shown in Dixit

and Pindyck (1994, Chapter 4), the Bellman equation in the continuation region of V1(W (t)) is given by

[rV1(W (t))− (R−W (t))]dt = E[dV1(W (t))]. Using Ito’s Lemma, the Bellman equation becomes

1
2
σ2W 2(t)V

′′

1 (W (t))+ μW (t)V
′

1 (W (t))− rV1(W (t))+ R−W (t) = 0. (27)

The Bellman equation (27) is a second-order nonhomogeneous differential equation. Hence the solution to

Eq. (27) takes the form V1(W ) = V h
1 (W )+V s

1 (W ), where V h
1 (W ) is the general solution of the corresponding

homogeneous equation to Eq. (27), given below,

1
2
σ2W 2V

′′

1 (W )+ μWV
′

1 (W )− rV1(W ) = 0, (28)

and V s
1 (W ) is a special solution of Eq. (27). Now, the general solution to the homogeneous equation (28)

takes the form V h
1 (W ) = A1(W )β1 + B1(W )β′

1 , where A1 and B1 are the constants to be determined by the

boundary conditions, and β1 and β′
1 are the two roots of the characteristic function of Eq. (28), 1

2
σ2β2 +

(μ− 1
2
σ2)β − r = 0, which can be worked out as

β1 =
1
2
−

μ

σ2
+

√(
μ

σ2
−

1
2

)2

+
2r

σ2
>

1
2
−

μ

σ2
+

√(
r

σ2
+

1
2

)2

> 1, (29)

β′
1 =

1
2
−

μ

σ2
−

√(
μ

σ2
−

1
2

)2

+
2r

σ2
< 0,

where the first root β1 > 1 is due to our assumption r > μ. To satisfy boundary condition of V1(0) = R/r, we

must have B1 = 0, so the general solution to homogeneous equation (28) takes the form of V h
1 (Wc) = A1(W )β1 .

It is easily verified that V s
1 (W ) = C

r
− W

r−μ
, the value of keeping purchasing from the spot market , is a special

solution of the Bellman equation (27). Further, from boundary conditions of V1(W ∗) and ∂V1(W ∗)/∂W , we

can obtain Eq. (8). Therefore, the solution to the Bellman equation (27) is given by Eq. (9). Finally, from

Eqs. (8)–(9), we can verify that V1(W ) is continuous at W = W ∗, a piecewise twice continuously differentiable

function, and a decreasing function of W .
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Appendix B: Proof of Table 1

The proof for the results with respect to β1, O1 and W ∗ can be done by checking the first order conditions

and is omitted.

(a) We need to show that the first derivative of β1 with respect to σ is non-positive.

∂β1

∂σ
=

2μ
[√

( μ

σ2 −
1
2
)2 + 2r

σ2 − ( μ

σ2 −
1
2

+ r
μ
)
]

σ3

√
( μ

σ2 − 1
2
)2 + 2r

σ2

(30)

=
2(μβ1 − r)

σ3

√
( μ

σ2 −
1
2
)2 + 2r

σ2

< 0. (31)

The last inequality holds because, if μ = 0, then the numerator reduces to −2r < 0, hence ∂β1
∂σ

< 0;

if μ < 0, since β1 > 1, again ∂β1
∂σ

< 0; if 0 < μ < r, hence from Eq. (30), μ

σ2 − 1
2

+ r
μ
≥ 0, we obtain

( μ

σ2 −
1
2

+ r
μ
)2 = ( μ

σ2 −
1
2
)2 + 2r

σ2 + r
μ
( r

μ
− 1) > ( μ

σ2 −
1
2
)2 + 2r

σ2 , therefore ∂β1
∂σ

< 0.

(b) We first exam the derivative of O1 = ( W
W∗ )β1( W∗

r−μ
− C

r
) with respect to β1.

∂O1

∂β1

=
W

r−μ

1
β1

(
W ∗

W

)1−β1
(

− ln

(
W ∗

W

))

≤ 0,

where the last inequality holds since W < W ∗ = β1
β1−1

(
P
r

)
(r−μ). This further implies that ∂O1

∂σ
> 0. In

addition, it is easily seen from Eq. (8) that ∂W∗

∂β1
< 0. Together with ∂β1

∂σ
< 0, we conclude that ∂W∗

∂σ
> 0.

From E(T ∗
1 |W ≤W ∗) = ln(W∗/W )

μ− 1
2 σ2 , we also see that ∂E[T1|W≤W∗]

∂σ
> 0.

Appendix C: Proof of Proposition 2

The Bellman equation for v2(λ2) satisfies the second-order ordinary differential equation in the continuation

region (Dixit and Pindyck (1994, p210), McDonald and Siegel (1986, A.4)):

1
2
(σ2 − 2ρ2σσ2 + σ2

2)λ2
2v

′′
2 (λ2)+ (μ2 −μ)λ2v

′
2(λ2)− (r−μ2)v2(λ2) = 0.

Similar to the FP contract, it can be shown that there exists a threshold λ∗
2, such that it is optimal to exercise

CP the first time λ2(t) ≥ λ∗
2. Eq. (32) needs to satisfy the “smooth pasting” condition ∂v2(λ

∗
2)

∂λ2
= 1

r−μ
, the

boundary condition v2(0) = 0, and the “value matching” condition v2(λ∗
2) = λ∗

2
r−μ

− 1+α
r−μ2

. Following a similar

solution procedure that solves the value function for FP, we can obtain the closed-form solution for v2(λ2)

and the optimal threshold λ∗
2. Then using Eqs. (11) and (12), we convert v2(λ2) back to V2(W,W2), and

present it as in the proposition:

Appendix D: Proof of Proposition 3

(a) Fixing σ and σ2, we have
∂σλ2
∂ρ2

= −2σσ2
σλ2

< 0. Furthermore, we need to show ∂β2
∂σλ2

< 0. From Eq. (15),

∂β2

∂σλ2

=

2(μ−μ2)

[√
( (μ−μ2)

σ2
λ2

− 1
2
)2 + 2(r−μ2)

σ2
λ2

− ( (μ−μ2)

σ2
λ2

− 1
2

+ (r−μ2)

(μ−μ2)
)

]

σ3
λ2

√
( (μ−μ2)

σ2
λ2

− 1
2
)2 + 2(r−μ2)

σ2
λ2

(32)

=
2(μ−μ2)β1 − 2(r−μ2)

σ3
λ2

(β1 − 1
2

+ μ−μ2
σ2

λ2

)
. (33)
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We use Eq. (32) to prove ∂β2
∂σλ2

< 0. Because the denominator of Eq. (32) is positive, we need to show

that its numerator is non-positive, using the facts that r > μ2 and r > μ. If μ = μ2, then the numerator

reduces to −2(r − μ2) < 0; if μ < μ2, then the numerator is negative because μ−μ2
σ2

λ2

− 1
2

+ r−μ2
μλ2

< 0; if

μ > μ2, we have μ−μ2
σ2

λ2

− 1
2
+ r−μ2

μλ2
> 0 and (μ−μ2

σ2
λ2

− 1
2
+ r−μ2

μλ2
)2 = (μ−μ2

σ2
λ2

− 1
2
)2 + 2(r−μ2)

σ2
λ2

+ r−μ2
μλ2

( r−μ2
μλ2

−1) >

(μ−μ2
σ2

λ2

− 1
2
)2 + 2(r−μ2)

σ2
λ2

, implying that ∂β2
∂σλ2

< 0.

(b)

∂O2

∂β2

=
W

r−μ

1
β2

(
λ2

∗

λ2

)1−β2
(

− ln
λ2

∗

λ2

)

≤ 0,

where the last inequality holds since W
W2

= λ2 ≤ λ∗
2 = β2

β2−1
r−μ

r−μ2
(1 + α). Since, by part (a), ∂β2

∂σλ2
≤ 0,

we have ∂O2
∂λ2

= ∂O2
∂β2

∂β2
∂σλ2

≥ 0. Next, It can be easily seen from Eq. (14) that ∂λ∗
2

∂β2
< 0, implying ∂λ∗

2
∂σλ2

=
∂λ∗

2
∂β2

∂β2
∂λ2

≥ 0.

(c)
∂σλ2
∂σ2

= σ2−ρ2σ

σλ2
≥0 if and only if ρ2σ ≤ σ2, or, equivalently, Cov2

σ2
2

≤ 1.

Appendix E: Proof of Theorem 1

(a) We derive the switching curve in the following two cases. We shall use the results that both V1(W )

and V2(W,W2) are continuous functions. Consequently, the switching curve S(W ), i.e., the indifference

curve of V1(W ) and V2(W,W2), must also be continuous.

Denote the intersection point of the two threshold lines under the two contracts is denoted by W ∗
2 , i.e.,

W ∗
2 = W ∗/λ∗

2. At this intersection point, the corresponding vendor’s cost satisfies

W ∗
2 ≡W ∗/λ∗

2 =
β1

β1 − 1
β2 − 1

β2

P

1+ α

r−μ2

r
. (34)

Case 1 β2 ≥ β1: We use the left figure of Figure 1 to facilitate our discussion. From Eqs. (18) and (34),

we have W ∗
2 > C

1+α

r−μ2
r

= SEE(W ∗), that is, the indifference curve SEE , which is a constant in its

defined region, will not intercept the threshold line for the CP contract (the black dash line in

Figure 1 (left) , and will intercept the threshold line for the FP contract (the blue dash dotted line

in Figure 1 (left) at a value smaller than W ∗
2 , the interception value of the two threshold lines, as

seen in Figure 1 (left). Due to continuity of the switching curve S(W ), SEE must be connected with

SUE at W = W ∗. Because SUE is an increasing concave function, as W decreases, SUE and the linear

threshold line W2 = 1
λ∗
2
W will cross only once when W = W ′ = (β1

β2
)1/(β1−1)W ∗, where W ′ is the

unique solution of SUE(W ) = 1
λ∗
2
W , as illustrated by Figure 1 (upper left). Further, SUE will meet

SUU at W = W ′. Because SUU is increasing and concave, and SUU (0) =

(
(λ∗

2)1−β2

β2(r−μ)

(W∗)1−β1
β1(r−μ)

)1/(β2−1)

> 0,

we know that W = W ′ is the unique point at which SUU intercepts the threshold line 1
λ∗
2
W , as

illustrated in Figure 1 (upper left). In summary, the switching curve S(W ) is a piecewise increasing

concave function constituting indifference curves SUU , SUE and SEE (the red solid line in Figure

1 (left), given in Eq. (18)). The switching curve confirms the intuition that the client with cost

WC should choose the CP contract if the vendor 2’s cost W2 is lower than a threshold, and this

threshold is increasing as W increases.
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Case 2 β1 ≤ β2 : We use Figure 1 (right) to aid discussions in this case. In this case, from Eqs. (19) and (34),

we have W ∗
V < C

1+α

r−μ2
r

= SEE(W ∗), that is, SEE , which is independent of W , will not intercept the

threshold line for the FP contract, but will intercept the threshold line of the CP contract, 1
λ∗
2
W ,

at a value greater than W ∗
2 . Let W = W ′′ = β2

β2−1
β1−1

β1
W ∗ (from Eq. (14) and (19)) be the point

that SEE intercepts 1
λ∗
2
W . Then, SEE will meet with SEU at W = W

′′
, as seen in Figure 1 (right).

Because SEU is decreasing and convex, as W decreases, it will intercept the threshold line of the FP

contract at W ∗, as illustrated by function SEU in Figure 1 (middle left). At point W = W ∗, SEU is

connected with SUU . Because SUU is decreasing and convex and SUU(0) =

(
(λ∗

2)1−β2

β2(r−μ)

(W∗)1−β1
β1(r−μ)

)1/(β2−1)

> 0,

we know that SUU will not intercept the threshold line 1
λ∗
2
W in its region, again as seen in Figure 1

(right). To summarize, the switching curve S(W ) with β2 < β1 is a continuous, piecewise decreasing

convex function consisting of indifference curves SUU , SEU and SEE given in Eq. (19).

(b) (1) From Eq. (18), we take the first derivative of SUU and obtain

∂SUU(W )
∂W

=




(λ∗

2)1−β2

β2(r−μ)

(W∗)1−β1

β1(r−μ)





1
β2−1

W
1−β1
β2−1

(
β2 −β1

β2 − 1

)

,

which is positive if β2 > β1, negative if β2 < β1, and equal to zero if β2 = β1. The second derivative

of SUU yields

∂2SUU(W )
∂W 2

= −




(λ∗

2)1−β2

β2(r−μ)

(W∗)1−β1

β1(r−μ)





1
β2−1

W
2−β1−β2

β2−1

(
β2 −β1

β2 − 1

)(
β1 − 1
β2 − 1

)

,

which is negative if β2 > β1, positive if β2 < β1, and equal to zero if β2 = β1.

(2) From Eq.(19), we take the first derivative of SEU with respect to W and obtain

∂SEU (W )
∂W

=
1

1−β2




W

r−μ
− C

r

(λ∗
2)1−β2

β2(r−μ)
W β2





β2
1−β2

(
(1−β2)W

r−μ
+ Cβ2

r

)

(λ∗
2)1−β2

β2(r−μ)
W β2+1

. (35)

We know 1
1−β2

< 0 since β2 > 1. Since W ≥ W ∗, from Eq. (8), W ≥ β1
β1−1

C
r
(r − μ) > C

r
(r − μ),

thus W
r−μ

− C
r

> 0. Because (λ∗
2)1−β2

β2(r−μ)
> 0, we have

(
W

r−μ
− C

r

(λ∗
2)1−β2

β2(r−μ) W β2

)

> 0. Finally, since W < λ∗
2W and

β2 > 1, we have

0 ≤ W 1−β2 − (λ∗
2W2)

1−β2

= W−β2(r−μ)

(
(1−β2)W

r−μ
+

Cβ2

r

)

, (36)

where the first equality uses the identify W2 = SEU (W ) =

(
W

r−μ
− C

r

(λ∗
2)1−β2

β2(r−μ) W β2

)1/(1−β2)

. Therefore, the

last term in Eq.(35) is positive. Thus we conclude dSEU (W )

dW
< 0.

Now, we take the second derivative of SEU (W ) and after some simplifications,

∂2SEU(W )
∂W 2

−
1

1−β2




W

r−μ
− C

r

(λ∗
2)1−β2

β2(r−μ)
W β2





β2
1−β2

β2

(λ∗
2)1−β2

β2(r−μ)
W β2+2

[
(1−β2)W

r−μ
+

(β2 +1)C
r

]

.

Similar to our argument in the proof of dSEU (W )

dW
> 0, the first expression is positive. The second

expression is also positive due to Eq.(36).
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(3) First, ∂SUE(W )

∂W
= ( 1

r−μ
−β1W

β1−1 (W∗)1−β1

β1(r−μ)
) r−μ2

1+α
> 0, where the inequality comes from Eqs. (8) and

(18), and W < W ∗. Moreover, we can show ∂2SUE(W )

∂W2 =−β1(β1 − 1)W β1−2 (W∗)1−β1

β1(r−μ)
r−μ2
1+α

< 0.

(4) From Eq. (18), we can shown ∂SEE(WC)

∂WC
= 0.

Appendix F: Proof of Proposition 4

(a) First note that V1(W ), defined in Eq. (9), is independent of W and ρ2. We write V2(W,W2, ρ2) and

S(W,ρ2) to indicate, explicitly, that each function depends on ρ. By Eq. (17), S(W,ρ2) is vendor 2’s

cost W2 that equalizes the values of the two contracts, i.e., V1(W ) = V2(W,S(W,ρ2), ρ2). By Eq. (14),

V2(W,W2, ρ2) is decreasing in W2. In addition, part (a) of Proposition 3, in conjunction with Eq. (14),

implies that V2(W,W2, ρ2) is decreasing in ρ2. This implies, for ρ−
2 < ρ+

2 ,

V1(W ) = V2(W,S(W,ρ−
2 ), ρ−

2 )≥ V2(W,S(W,ρ−
2 ), ρ+

2 ).

This further implies S(W,ρ−
2 )≥ S(W,ρ+

2 ) since V2(W,W2, ρ
+
2 ) is decreasing in W2.

(b) We write V2(W,W2, σ2) and S(W,σ2) to explicitly indicate that each function depends on σ2. Again

V1(W ) is independent of W2 and σ2 and V2(W,W2, σ2) is decreasing in W2. By Eq. (17), S(W,σ2) is

the value of W2 that equalizes the values of the two contracts, i.e., V2(W ) = V2(W,S(W,σ2), σ2). In

addition, parts (a) and (c) of Proposition 3, in conjunction with Eq. (14), imply that V2(W,W2, σ2) is

decreasing in σ2 for σ2 ≤ ρ2σ. Then, for σ−
2 < σ+

2 ≤ ρ2σ,

V1(W ) = V2(W,S(W,σ−
2 ), σ−

2 )≥ V2(W,S(W,σ−
2 ), σ+

2 ).

This further implies S(W,σ−
2 ) ≥ S(W,σ+

2 ), for σ−
2 < σ+

2 ≤ ρ2σ, since V2(W,W2, σ
−
2 ) is decreasing in

W2. On the other hand, parts (a) and (c) of Proposition 3 and Eq.(14) imply that V2(W,W2, σ2) is

increasing in σ2 for σ2 ≥ ρ2σ. Therefore, for ρ2σ ≤ σ−
2 < σ+

2 ,

V1(W ) = V2(W,S(W,σ−
2 ), σ−

2 )≤ V2(W,S(W,σ−
2 ), σ+

2 ).

Thus, S(W,σ−
2 )≤ S(W,σ+

2 ), ρ2σ ≤ σ−
2 < σ+

2 , since V2(W,W2,σ−
2 ) is decreasing in W2.

(c) This follows from the facts that ∂V1(W )/∂β1 ≤ 0, ∂V1(W )/∂β2 = 0, ∂V2(W,W2)/∂β1 = 0,

∂V2(W,W2)/∂β2 ≤ 0. Remaining proof is similar as that in the above part (a) and (b).

Appendix G: Proof of Proposition 5

When TE = ∞, we can write U1(W,W1) = E
[∫∞

T∗
1
(C −W1(t))e−rtdt

]
= E

[∫∞

T∗
1

Ce−rtdt
]

−

E
[∫∞

T∗
1

W1(t))e−rtdt
]

= C
r
E
[
e−rT∗

1
]
−W1E

[∫∞

T∗
1

e(μ1−σ2
1/2−r)t+σ1B1(t)dt

]
.

Now write B1(t) = ρ1B(t) +
√

1− ρ2
1B̃(t), where B̃(t) is a standard Brownian motion such that

Corr[dB(t), dB̃(t)] = 0. Note that E[eσ1B1(t)|T ∗
1 ] = eσ1B1(T

∗
1 )+ 1

2 σ2
1(t−T∗

1 ), where the conditional expectation

E[∙|T ∗
1 ] is taken with respect conditioning on information available at time T ∗

1 . Moreover, note that

B(T ∗
1 ) =

1
σ

(ln(
W ∗

W
)− (μ−

1
2
σ2)T ∗

1 ) and E[eσ1

√
1−ρ2

1B̃(T∗
1 )− 1

2 σ2
1(1−ρ2

1)T
∗
1 ] = 1.
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Let γ1 ≡ r−μ1 + 1
2
ρ2
1σ

2
1 + σ1ρ1

σ
(μ− σ2

2
). Then

E

[∫ ∞

T∗
1

e(μ1−σ2
1/2−r)t+σ1B1(t)dt

]

= E

[

E

[∫ ∞

T∗
1

e(μ1−
1
2 σ2

1−r)t+σ1B1(t)dt|T ∗
1

]]

= E

[∫ ∞

T∗
1

e(μ1−
1
2 σ2

1−r)tE
[
eσ1B1(t)|T ∗

1

]
dt

]

= E

[∫ ∞

T∗
1

e(μ1−r)t− 1
2 σ2

1T∗
1 +σ1B1(T

∗
1 )dt

]

= E

[∫ ∞

T∗
1

e(μ1−r)t− 1
2 σ2

1T∗
1 +σ1(ρ1B(T∗

1 )+
√

1−ρ2
1B̃(T∗

1 ))dt

]

=
1

r−μ1

E
[
e−(μ1−r)T∗

1 − 1
2 σ2

1T∗
1 +

σ1ρ1
σ

(ln( W∗
W

)−(μ− 1
2 σ2)T∗

1 )+ 1
2 σ2

1(1−ρ2
1)T

∗
1

]

=
1

r−μ1

E
[
e−γ1T∗

1
]
(
W ∗

W
)

σ1ρ1
σ (37)

For any y > 0, let β1,y ≡ 1
2
− μ

σ2 +
√(

μ

σ2 −
1
2

)2
+ 2y

σ2 . Using standard real options theory (see Dixit and

Pindyck (1994) and Shreve (2004)), it can be shown

E
[
e−yT∗

1
]
= (

W

W ∗
)β1,y . (38)

From Eq. (21), β̃1 = β1,γ1 −
σ1ρ1

σ
. From Eqs. (37) and (38), we have

U1(W,W1) = (
W

W ∗
)β1

C

r
− (

W

W ∗
)β̃1

W1

r−μ1

.

Appendix H: Proof of Proposition 6 and Theorem 2

The proof of part (a) of Theorem 2 is straightforward and hence omitted. The proof of part (a) of Proposition

6 and parts (b) of Theorem 2 are combined since one can be easily derived from another. The proof of part

(c) of Proposition 6 and parts (c) of Theorem 2 are also combined. In the following proof, (a)-(d) correspond

to proof of parts (a)-(d) of Proposition 6.

(a) From Eq. (21),

∂β̃1

∂ρ1

=
1−

√
(μ+ρ1σ1

σ2 − 1
2
)2 + 2(r−μ1)

σ2

σ
√

(μ+ρ1σ1
σ2 − 1

2
)2 + 2(r−μ1)

σ2

< 0, (39)

the last inequality satisfies when 2(r−μ1)

σ2 > 1. Similarly we can prove that ∂β̃1
∂σ1

< 0.

From Eq. (20), ∂U1(W,W1)

∂β̃1
≥ 0, then ∂U1(W,W1)

∂ρ1
≤ 0. Similarly we have ∂U1(W,W1)

∂σ1
≤ 0. Furthermore,

∂2U1(W,W1)

∂(β̃1)2
≥ 0.

From Eq. (22), ∂P1(W )

∂β̃1
≥ 0, then ∂P1(W )

∂ρ1
≤ 0. Similarly we have ∂P1(W )

∂σ1
≤ 0. Furthermore, ∂2P1(W )

∂(β̃1)2
≥ 0.

(b) We show the property of ( W
W∗ )β1 with respect to β1, which directly translates to the property of ( W

W∗ )β1

with respect to σ, since β1 is decreasing in σ. The derivative of ( W
W∗ )β1 work out as:

∂( W
W∗ )β1

∂β1

= (
W

W ∗
)β1

(

ln(
W

W ∗
)+

1
β1 − 1

)

.

This expression is positive if and only if W
W∗ ≥ e

−1
β1−1 .
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(c) From Eq. (20), when W < W ∗, ∂U1(W,W1)

∂β1
=

∂( W
W∗ )β1

∂β1

C
r
−

∂( 1
W∗ )β̃1

∂β1

W β̃1W1
r−μ1

. The derivatives of
∂( 1

W∗ )β̃1

∂β1
and

∂( W
W∗ )β1

∂β1
work out as:

∂( 1
W∗ )β̃1

∂β1

= (
1

W ∗
)β̃1

β̃1

β1(β1 − 1)
(40)

∂( W
W∗ )β1

∂β1

= (
W

W ∗
)β1

(

ln(
W

W ∗
)+

1
β1 − 1

)

(41)

After substituting, we obtain

∂U1(W,W1)
∂β1

=
( W

W∗ )β̃1

(r−μ1)

[

P (W )

(

ln(
W

W ∗
)+

1
β1 − 1

)

−
β̃1W1

β1(β1 − 1)

]

(42)

where the last equality uses the relationship P1(W ) = ( w
W∗ )β1−β̃1 C(r−μ1)

r
. If W ≤W ∗e

−1
β1−1 , both terms

in Eq (42) are negative, implying U1(W,W1) is decreasing in β1. If W ≥W ∗e
−1

β1−1 , then the first term

is positive and the second term is negative. Define P̃1(W )

P̃1(W ) =

{
0 W ≤W ∗e

−1
β1−1

β1(β1−1)

β̃1
P1(W )

(
ln( W

W∗ )+ 1
β1−1

)
, W ∗e

−1
β1−1 ≤W ≤W ∗

(43)

In words, P1(W ) is the value of W1 so that Eq. (42) equals zero if W ≥ e
−1

β1−1 . Note that P̃1(W ) ≤

P1(W ). Clearly, U1(W,W1) is decreasing in β1 if W1 ≤ P̃1(W ) and increasing in β1 if W1 ≥ P̃1(W ):

∂U1(W,W1)
∂β1

=

{
≤ 0 if W1 ≤ P̃1(W )
≥ 0 if W1 ≥ P̃1(W )

In words, function P̃1(W ) partitions vendor 1’s participation region, W1 ≤ P1(W ), into the β1-decreasing

region, W1 ≤ P̃1(W ), and the β1-increasing region, P̃1(W )≤ W1 ≤ P1(W ).

(d) From Eq. (22), when W < W ∗,

∂P1(W )
∂β1

= P1(W )

(

ln(
W

W ∗
)+

β1 − β̃1

β1(β1 − 1)

)

(44)

If β1 ≤ β̃, both items of Eq. (44) are negative, implying that P1(W ) is a decreasing function of β1. If

β1 ≥ β̃, then the first term is positive and the second term is negative. Therefore, P1(W ) is an increasing

function of β1 if W ≤W ∗e
−(β1−β̃1)
β1(β1−1) and a decreasing function of β1 if W ≥W ∗e

−(β1−β̃1)
β1(β1−1) .

(5) From Eq. (22), ∂P1(W )

∂W
= (r−μ1)C

Wr
( W

W∗ )β1−β̃1 [β1 − β̃1(1−
ξ1r

C
( W

W∗ )−β1)], then P1(W ) is increasing in W if

β1 ≥ β̃1(1−
ξ1r

C
), or if β1 ≤ β̃1(1−

ξ1r

C
) and W ≤W ∗(

ξ1r
C

1−
β1
β̃1

)
1

β1 ; and decreasing in W otherwise.

Appendix I: Proof of Proposition 7

Now write B2(t) = ρλ2,2Bλ2(t) +
√

1− ρ2
λ2,2B̃λ2(t), where ρλ2,2 = ρ2σ−σ2

σλ2
, B̃λ2(t) is a standard Brownian

motion such that Corr[dBλ2(t), dB̃λ2(t)] = 0. Note that E[eσ2B2(t)|T ∗
2 ] = eσ2B2(T

∗
2 )+ 1

2 σ2
2(t−T∗

2 ), Bλ2(T
∗
2 ) =

1
σλ2

(ln(λ∗
2

λ2
)− (μλ2 −

1
2
σ2

λ2
)T ∗

2 ), E[e
σλ2

√
1−ρ2

λ2,2B̃(T∗
2 )− 1

2 σ2
λ2

(1−ρ2
λ2,2)T

∗
2 ] = 1, then

U2(W,W2) = E

[∫ ∞

T∗
2

αW2(t)e
−rtdt

]

= αW2E

[∫ ∞

T∗
2

e(μ2−σ2
2/2−r)t+σ2B2(t)dt

]

= αW2E

[∫ ∞

T∗
2

e(μ2−r)t− 1
2 σ2

2T∗
2 +σ2B2(T

∗
2 )dt

]

=
αW2

r−μ2

E
[
e(μ2−r)T∗

2 − 1
2 σ2

2T∗
2 +σ2B2(T

∗
2 )
]

= αW2E

[

e
(μ2−r)T∗

2 −( 1
2 ρ2

λ2,2σ2
2+

σ2ρλ2,2
σλ2

(μλ− 1
2 σ2

λ2
))T∗

2 +
σ2ρλ2,2

σλ2
ln(

λ∗
2

λ2
)
]

=
αW2

r−μ2

(
λ∗

2

λ2

)
σ2ρλ2,2

σλ2 E
[
e−γ2T∗

2
]

(45)
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where γ2 ≡ r−μ2 + 1
2
ρ2

λ2,2σ
2
2 +

σ2ρλ2,2

σλ2
(μλ − 1

2
σ2

λ2
).

For any y > 0, and β2,γ2 ≡
1
2
− μλ

σ2
λ

+

√(
μλ

σ2
λ
− 1

2

)2

+ 2y

σ2 , it can be shown (see Dixit and Pindyck (1994) and

Shreve (2004))

E
[
e−yT∗

2
]
= (

λ2

λ∗
2

)β2,y . (46)

From Eqs. (45) and (46), and note that β2,γ2 −
σ2ρλ2,2

σλ2
= β2, we have

U2(W,W2) =
αW2

r−μ2

(
W

W2λ∗
2

)
β2,γ2−

σ2ρλ2,2
σλ2 =

αW2

r−μ2

(
W

W2λ∗
2

)β2 .

As a remark, note that an alternative derivation of U2 can follow from E
[
W2(T ∗

2 )e−rT∗
2
]

= W2( W
W2λ∗

2
)β2 ,

which can be derived similarly as Ṽ2 in Section 4.2.

From Eq. (24), when λ2 < λ∗
2, we take the derivative of U2 with respect to β2 and obtain

∂U2(W,W2)
∂β2

=
αW2

r−μ2

(
W

W2λ∗
2

)β2(ln(
W

W2λ∗
2

)+
1

β2 − 1
)

{
> 0 if λ2 > λ∗

2e
−1

β2−1

≤ 0 if λ2 ≤ λ∗
2e

−1
β2−1

From the other first derivatives of U2, the remaining proof is straightforward.

Appendix J: Proof of Part (c) of Theorem 3

When λ2 ≥ λ∗
2,

∂P2(W )

∂β2
= 0. When λ2 < λ∗

2,

∂P2(W )
∂β2

= P2(W )
−1

(β2 − 1)2
[(ln(

W

λ∗
2

α

(r−μ2)ξ2

)− 1)]
{

> 0 if λ∗
2

(r−μ2)ξ2
α

e≤W ≤ λ∗
2W2

≤ 0 if λ∗
2

(r−μ2)ξ2
α

≤W ≤ λ∗
2

(r−μ2)ξ2
α

e and W ≤ λ∗
2W2
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